Download Free Open Problems And Surveys Of Contemporary Mathematics Book in PDF and EPUB Free Download. You can read online Open Problems And Surveys Of Contemporary Mathematics and write the review.

A collection of articles showcasing the achievements of young Russian researchers in combinatorial and algebraic geometry and topology.
This collection of articles from the Independent University of Moscow is derived from the Globus seminars held there. They are given by world authorities, from Russia and elsewhere, in various areas of mathematics and are designed to introduce graduate students to some of the most dynamic areas of mathematical research. The seminars aim to be informal, wide-ranging and forward-looking, getting across the ideas and concepts rather than formal proofs, and this carries over to the articles here. Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups. The volume as a whole is a fascinating and exciting overview of contemporary mathematics.
This volume contains nineteen survey papers describing the state of current research in discrete and computational geometry as well as a set of open problems presented at the 2006 AMS-IMS-SIAM Summer Research Conference Discrete and Computational Geometry--Twenty Years Later, held in Snowbird, Utah, in June 2006. Topics surveyed include metric graph theory, lattice polytopes, the combinatorial complexity of unions of geometric objects, line and pseudoline arrangements, algorithmic semialgebraic geometry, persistent homology, unfolding polyhedra, pseudo-triangulations, nonlinear computational geometry, $k$-sets, and the computational complexity of convex bodies.
We are living in the Golden Age of mathematics, with more research being done than ever before. Yet many people view mathematics as a static, completed subject. This book for general readers aims to open the door to the rapid modern growth of mathematics and its power and beauty. It surveys many areas of current research in non-technical terms, describing what the problems are, where they come from, how they get solved, what mathematicians are like, what you can do with the answers when you get them, and how solving them or failing to solve them changes peoples' views of mathematics and the way it is advancing. Topics include Fermat's Last Theorem, the Riemann hypothesis, the Poincare Conjecture, prime numbers, non-Euclidean geometry, infinity, the four-color problem, probability, catastrophe theory, chaos, fractals, algorithms, and undecidable propositions. A final chapter discusses the relations between mathematics and its applications. Each topic is developed within a historical framework, and a number of recent breakthroughs are presented for the first time in layman's terms.
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.
Most of the papers in this book deal with the theory of Riemann surfaces (moduli problems, automorphisms, etc.), abelian varieties, theta functions, and modular forms. Some of the papers contain surveys on the recent results in the topics of current interest to mathematicians, whereas others contain new research results.
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.