Download Free One Dimensional Stable Distributions Book in PDF and EPUB Free Download. You can read online One Dimensional Stable Distributions and write the review.

This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.
This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.
The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.
Stable Lévy processes lie at the intersection of Lévy processes and self-similar Markov processes. Processes in the latter class enjoy a Lamperti-type representation as the space-time path transformation of so-called Markov additive processes (MAPs). This completely new mathematical treatment takes advantage of the fact that the underlying MAP for stable processes can be explicitly described in one dimension and semi-explicitly described in higher dimensions, and uses this approach to catalogue a large number of explicit results describing the path fluctuations of stable Lévy processes in one and higher dimensions. Written for graduate students and researchers in the field, this book systemically establishes many classical results as well as presenting many recent results appearing in the last decade, including previously unpublished material. Topics explored include first hitting laws for a variety of sets, path conditionings, law-preserving path transformations, the distribution of extremal points, growth envelopes and winding behaviour.
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.
The aim of this Special Issue of Mathematics is to commemorate the outstanding Russian mathematician Vladimir Zolotarev, whose 90th birthday will be celebrated on February 27th, 2021. The present Special Issue contains a collection of new papers by participants in sessions of the International Seminar on Stability Problems for Stochastic Models founded by Zolotarev. Along with research in probability distributions theory, limit theorems of probability theory, stochastic processes, mathematical statistics, and queuing theory, this collection contains papers dealing with applications of stochastic models in modeling of pension schemes, modeling of extreme precipitation, construction of statistical indicators of scientific publication importance, and other fields.
This book reports on the latest advances in the analysis of non-stationary signals, with special emphasis on cyclostationary systems. It includes cutting-edge contributions presented at the 7th Workshop on “Cyclostationary Systems and Their Applications,” which was held in Gródek nad Dunajcem, Poland, in February 2014. The book covers both the theoretical properties of cyclostationary models and processes, including estimation problems for systems exhibiting cyclostationary properties, and several applications of cyclostationary systems, including case studies on gears and bearings, and methods for implementing cyclostationary processes for damage assessment in condition-based maintenance operations. It addresses the needs of students, researchers and professionals in the broad fields of engineering, mathematics and physics, with a special focus on those studying or working with nonstationary and/or cyclostationary processes.