Download Free One Dimensional Functional Equations Book in PDF and EPUB Free Download. You can read online One Dimensional Functional Equations and write the review.

The monograph is devoted to the study of functional equations with the transformed argument on the real line and on the unit circle. Such equations systematically arise in dynamical systems, differential equations, probabilities, singularities of smooth mappings, and other areas. The purpose of the book is to present modern methods and new results in the subject, with an emphasis on a connection between local and global solvability. The general concepts developed in the book are applicable to multidimensional functional equations. Some of the methods are presented for the first time in the monograph literature. The book is addressed to graduates and researchers interested in dynamical systems, differential equations, operator theory, or the theory of functions and their applications.
Numerous detailed proofs highlight this treatment of functional equations. Starting with equations that can be solved by simple substitutions, the book then moves to equations with several unknown functions and methods of reduction to differential and integral equations. Also includes composite equations, equations with several unknown functions of several variables, vector and matrix equations, more. 1966 edition.
Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.
The monograph is devoted to the study of functional equations with the transformed argument on the real line and on the unit circle. Such equations systematically arise in dynamical systems, differential equations, probabilities, singularities of smooth mappings and other areas. The purpose of the book is to present the modern methods and new results in the subject with an emphasis on a connection between local and global solvability. Some of methods are presented for the first time in the monograph literature. The general concepts developed in the monograph are applicable to multidimensional functional equations.
Recently I taught short courses on functional equations at several universities (Barcelona, Bern, Graz, Hamburg, Milan, Waterloo). My aim was to introduce the most important equations and methods of solution through actual (not artifi cial) applications which were recent and with which I had something to do. Most of them happened to be related to the social or behavioral sciences. All were originally answers to questions posed by specialists in the respective applied fields. Here I give a somewhat extended version of these lectures, with more recent results and applications included. As previous knowledge just the basic facts of calculus and algebra are supposed. Parts where somewhat more (measure theory) is needed and sketches of lengthier calcula tions are set in fine print. I am grateful to Drs. J. Baker (Waterloo, Ont.), W. Forg-Rob (Innsbruck, Austria) and C. Wagner (Knoxville, Tenn.) for critical remarks and to Mrs. Brenda Law for care ful computer-typing of the manuscript (in several versions). A note on numbering of statements and references: The numbering of Lemmata, Propositions, Theorems, Corollaries and (separately) formulae starts anew in each section. If quoted in another section, the section number is added, e.g. (2.10) or Theorem 1.2. References are quoted by the last names of the authors and the last two digits of the year, e.g. Daroczy-Losonczi [671. 1 1. An aggregation theorem for allocation problems. Cauchy equation for single-and multiplace functions. Two extension theorems.
This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume.
Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)
The functional equation technique of dynamic programming is used to study the dependence of the Green's function of the equation u' + q(x)u = f(x), u(a) = u(1) = 0, upon the parameter a. (Author).
Numerous detailed proofs highlight this treatment of functional equations. Starting with equations that can be solved by simple substitutions, the book then moves to equations with several unknown functions and methods of reduction to differential and integral equations. Also includes composite equations, equations with several unknown functions of several variables, vector and matrix equations, more. 1966 edition.