Download Free Ondelettes Et Algorithmes Concurrents Book in PDF and EPUB Free Download. You can read online Ondelettes Et Algorithmes Concurrents and write the review.

This collection of independent case studies demonstrates how wavelet techniques have been used to solve open problems and develop insight into the nature of the systems under study. Each case begins with a description of the problem and points to the specific properties of wavelets and techniques used for determining a solution. The cases range from a very simple wavelet-based technique for reducing noise in laboratory data to complex work on two-dimensional geographical data display conducted at the Earthquake Research Institute in Japan. One case study shows how wavelet analysis is used in the development of a Japanese text-to-speech system for personal computers and another presents new wavelet techniques developed for and applied to the study of atmospheric wind, turbulent fluid, and seismic acceleration data.
The wavelet transform can be seen as a synthesis of ideas that have emerged since the 1960s in mathematics, physics, and electrical engineering. The basic idea is to use a family of ``building blocks'' to represent in an efficient way the object at hand, be it a function, an operator, a signal, or an image. The building blocks themselves come in different ``sizes'' which can describe different features with different resolutions. The papers in this book attempt to give some theoretical and technical shape to this intuitive picture of wavelets and their uses. The papers collected here were prepared for an AMS Short Course on Wavelets and Applications, held at the Joint Mathematics Meetings in San Antonio in January 1993. Here readers will find general background on wavelets as well as more detailed views of specific techniques and applications. With contributions by some of the top experts in the field, this book provides an excellent introduction to this important and growing area of research.
"Beyond Wavelets" presents state-of-the-art theories, methods, algorithms, and applications of mathematical extensions for classical wavelet analysis. Wavelets, introduced 20 years ago by Morlet and Grossmann and developed very rapidly during the 1980's and 1990's, has created a common link between computational mathematics and other disciplines of science and engineering. Classical wavelets have provided effective and efficient mathematical tools for time-frequency analysis which enhances and replaces the Fourier approach. However, with the current advances in science and technology, there is an immediate need to extend wavelet mathematical tools as well. "Beyond Wavelets" presents a list of ideas and mathematical foundations for such extensions, including: continuous and digital ridgelets, brushlets, steerable wavelet packets, contourlets, eno-wavelets, spline-wavelet frames, and quasi-affine wavelets. Wavelet subband algorithms are extended to pyramidal directional and nonuniform filter banks. In addition, this volume includes a method for tomographic reconstruction using a mechanical image model and a statistical study for independent adaptive signal representation. Investigators already familiar with wavelet methods from areas such as engineering, statistics, and mathematics will benefit by owning this volume. *Curvelets, Contourlets, Ridgelets, *Digital Implementation of Ridgelet Packets *Steerable Wavelet Packets *Essentially Non-Oscillatory Wavelets *Medical Imaging *Non-Uniform Filter Banks *Spline-wavelet frames and *Vanishing Moment Recovery Functions
One of the key geographical developments over the last two centuries has been that of urbanisation. In recent years this has exploded globally, particularly in developing countries. It is essential for governments, planners and researchers in geography and allied fields to understand this process and the main way of being able to do this is to accurately map these changes. The main method of this mapping is Remote Sensing. This up-to-date analysis of the area looks at a wide range of methodologies currently being used to produce and analyse remotely sensed data of urban areas. The authors examine the various techniques used to extract information from digital, multispectral images of urban areas. Donnay and Barnsley then go on to look at the identification of urban forms, the delineation of agglomerations and the development of urban morphology, considering the analysis of integrated data sets and surface models and going on to look at the estimation of human population levels.
This long-awaited update of Meyer's Wavelets: Algorithms and Applications includes completely new chapters on four topics: wavelets and the study of turbulence, wavelets and fractals (which includes an analysis of Riemann's nondifferentiable function), data compression, and wavelets in astronomy. The chapter on data compression was the original motivation for this revised edition, and it contains up-to-date information on the interplay between wavelets and nonlinear approximation. The other chapters have been rewritten with comments, references, historical notes, and new material. Four appendices have been added: a primer on filters, key results (with proofs) about the wavelet transform, a complete discussion of a counterexample to the Marr-Mallat conjecture on zero-crossings, and a brief introduction to H?lder and Besov spaces. In addition, all of the figures have been redrawn, and the references have been expanded to a comprehensive list of over 260 entries. The book includes several new results that have not appeared elsewhere.
This volume contains papers selected from the Wavelet Analysis and Multiresolution Methods Session of the AMS meeting held at the University of Illinois at Urbana-Champaign. The contributions cover: construction, analysis, computation and application of multiwavelets; scaling vectors; nonhomogenous refinement; mulivariate orthogonal and biorthogonal wavelets; and other related topics.
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.