Download Free On Universal Localization Of Noncommutative Noetherian Rings Book in PDF and EPUB Free Download. You can read online On Universal Localization Of Noncommutative Noetherian Rings and write the review.

This is a reprinted edition of a work that was considered the definitive account in the subject area upon its initial publication by J. Wiley & Sons in 1987. It presents, within a wider context, a comprehensive account of noncommutative Noetherian rings. The author covers the major developments from the 1950s, stemming from Goldie's theorem and onward, including applications to group rings, enveloping algebras of Lie algebras, PI rings, differential operators, and localization theory. The book is not restricted to Noetherian rings, but discusses wider classes of rings where the methods apply more generally. In the current edition, some errors were corrected, a number of arguments have been expanded, and the references were brought up to date. This reprinted edition will continue to be a valuable and stimulating work for readers interested in ring theory and its applications to other areas of mathematics.
This volume, dedicated to Bruno J. Müller, a renowned algebraist, is a collection of papers that provide a snapshot of the diversity of themes and applications that interest algebraists today. The papers highlight the latest progress in ring and module research and present work done on the frontiers of the topics discussed. In addition, selected expository articles are included to give algebraists and other mathematicians, including graduate students, an accessible introduction to areas that may be outside their own expertise.
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
This volume consists of a collection of invited papers on the theory of rings and modules, most of which were presented at the biennial Ohio State — Denison Conference, May 1992, in memory of Hans Zassenhaus. The topics of these papers represent many modern trends in Ring Theory. The wide variety of methodologies and techniques demonstrated will be valuable in particular to young researchers in the area. Covering a broad range, this book should appeal to a wide spectrum of researchers in algebra and number theory.
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
Ring Theory V2
Ring Theory V1
This book completely solves the problem of representing rings (and modules over them), which are locally noetherian over subsets of their prime spectrum by structure sheaves over this subset. In order to realise this, one has to develop the necessary localization theory as well as to study local equivalents of familiar concepts like the Artin-Rees property, Ore sets and the second layer condition. The first part of the book is introductory and self-contained, and might serve as a starting course (at graduate level) on localization theory within Grothendieck categories. The second part is more specialised and provides the basic machinery needed to effectively these structure sheaves, as well as to study their functorial behaviour. In this way, the book should be viewed as a first introduction to what should be called relative noncommutative algebraic geometry.