Download Free On The Role Of Wind Driven Ocean Dynamics In Tropical Atlantic Variability Book in PDF and EPUB Free Download. You can read online On The Role Of Wind Driven Ocean Dynamics In Tropical Atlantic Variability and write the review.

Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices
The exchange of momentum, heat, moisture, gases (such as CO 2 and O 2 ) and salt between the atmosphere and the ocean is a phenomenon of paramount importance for the dynamics of the atmosphere and the ocean. With the pressing need for reliable climate forecast (e.g. to deal with severe food and energy problems) interactive ocean-atmosphere models have become one of the main objectives of geophysical fluid dynamics. This volume provides the first state-of-the-art review of interactive ocean-atmosphere modelling and its application to climates. The papers are by active and eminent scientists from different countries and different disciplines. They provide a up-to-date survey of major recent discoveries and valuable recommendations for future research."
A comprehensive review of interactions between the climates of different ocean basins and their key contributions to global climate variability and change. Providing essential theory and discussing outstanding examples as well as impacts on monsoons, it a useful resource for graduate students and researchers in the atmospheric and ocean sciences.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 189. Climate Dynamics: Why Does Climate Vary? presents the major climate phenomena within the climate system to underscore the potency of dynamics in giving rise to climate change and variability. These phenomena include deep convection over the Indo-Pacific warm pool and its planetary-scale organization: the Madden-Julian Oscillation, the monsoons, the El Niño-Southern Oscillation, the Pacific Decadal Oscillation, and the low-frequency variability of extratropical circulations. The volume also has a chapter focusing on the discussion of the causes of the recent melting of Arctic sea ice and a chapter devoted to the discussion of the causes of recent changes in the frequency and intensity of tropical cyclones. On each topic, the basic material of climate dynamics is covered to aid the understanding of the forefront research, making the volume accessible to a broad spectrum of readers. The volume highlights include Diabatic and nonlinear aspects of the El Niño-Southern Oscillation Causes of sea ice melting in the Arctic Impact of global warming on tropical cyclone activity Origins of the Pacific Decadal Oscillation Causes of climate variability of Asian monsoons The volume will be of particular interest to graduate students and young researchers in atmospheric and oceanic sciences and related disciplines such as geology and geography. The book will also be a good read for those who have a more general interest in the Earth's climate and why it varies.
Tropical and Extratropical Air-Sea Interactions: Modes of Climate Variations provides a thorough introduction to global atmospheric and oceanic processes, as well as tropical, subtropical and mid-latitude ocean-atmosphere interactions. Written by leading experts in the field, each chapter is dedicated to a specific topic of air-sea interactions (such as ENSO, IOD, Atlantic Nino, ENSO Modoki, and newly discovered coastal Niños/Niñas) and their teleconnections. As the first book to cover all topics of tropical and extra-tropical air-sea interactions and new modes of climate variations, this book is an excellent resource for researchers and students of ocean, atmospheric and climate sciences. - Presents case studies on the ocean-atmosphere phenomena, including El Nino Southern Oscillation (ENSO), Indian Ocean Dipole and different Nino/Nina phenomena - Provides a clear description of air-sea relationships across the world's ocean with an analysis of air-sea relations in different time scales and a focus on climate change - Includes prospects for air-sea interaction research, thus benefiting young researchers and students
" ... as soon as one has traversed the greater part of the wild sea, one comes upon such a huge quantity of ice that nowhere in the whole world has the like been known." "This ice is of a wonderful nature. It lies at times quite still, as one would expect, with openings or large fjords in it; but sometimes its movement is so strong and rapid as to equal that of a ship running before the wind, and it drifts against the wind as often as with it." Kongespeilet - 1250 A.D. ("The Mirror of Kings") Modern societies require increasing amounts influence on the water mass and on the resulting of scientific information about the environment total environment of the region; therefore, cer tain of its characteristics will necessarily be in whieh they live and work. For the seas this information must describe the air above the sea, included.
This book focuses on two major challenges in the climate sciences: 1) to describe the decadal-to-centennial variations in instrumental and proxy records; and 2) to distinguish between anthropogenic variations and natural variability. The National Taiwan University invited some of the world's leading experts across the areas of observational analysis, mathematical theory, and modeling to discuss these two issues. The outcome of the meeting is the 23 chapters in this book that review the state of the art in theoretical, observational and modeling research on internal, unforced and externally forced climate variability. The main conclusion of this research is that internal climate variability on decadal and longer time scales is so large that sidestepping it may lead to false estimates of the climate's sensitivity to anthropogenic forcing.World Scientific Series on Asia-Pacific Weather and Climate is indexed in SCOPUS.
An overview of the advances made in the last decade and a half in this field. Based on an advanced graduate level course, the book represents fundamental insights into the structure of the physical theory of the large-scale dynamics of the oceans. The author has maintained throughout a blend of analytical and numerical results so as to achieve as deep a physical understanding of the dynamics of the large-scale circulations as possible. The results of the theories are compared with observations and the success or inadequacies of the theories are highlighted. Topics of particular interest are: theory of the wind-driven circulation, the thermocline, the equatorial circulation and the abyssal circulation. Much of the material - previously scattered throughout the literature - has been collated here for the first time.
The book presents results of recent projects in oceanography and marine geosciences (e.g. WOCE, JGOFS, PAGES, ODP) regarding present and past circulation in the South Atlantic. The objective of the book is to integrate results from both oceanographic and geological studies. As the connecting link between the Antarctic and the North Atlantic, the South Atlantic plays a crucial role with regard to the heat budget of the North Atlantic and to the biogeochemical budget of the global ocean. New results from studies of meridional water mass and heat transports are presented. The central theme of geological investigations is the reconstruction of current and productivity systems in the South Atlantic during the late Quaternary.
Many factors contribute to variability in Earth's climate on a range of timescales, from seasons to decades. Natural climate variability arises from two different sources: (1) internal variability from interactions among components of the climate system, for example, between the ocean and the atmosphere, and (2) natural external forcings, such as variations in the amount of radiation from the Sun. External forcings on the climate system also arise from some human activities, such as the emission of greenhouse gases (GHGs) and aerosols. The climate that we experience is a combination of all of these factors. Understanding climate variability on the decadal timescale is important to decision-making. Planners and policy makers want information about decadal variability in order to make decisions in a range of sectors, including for infrastructure, water resources, agriculture, and energy. In September 2015, the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine variability in Earth's climate on decadal timescales, defined as 10 to 30 years. During the workshop, ocean and climate scientists reviewed the state of the science of decadal climate variability and its relationship to rates of human-caused global warming, and they explored opportunities for improvement in modeling and observations and assessing knowledge gaps. Frontiers in Decadal Climate Variability summarizes the presentations and discussions from the workshop.