Download Free On The Metaphysics Of Experimental Physics Book in PDF and EPUB Free Download. You can read online On The Metaphysics Of Experimental Physics and write the review.

This provocative and critical work addresses the question of why scientific realists and positivists consider experimental physics to be a natural and empirical science. Taking insights from contemporary science studies, continental philosophy, and the history of physics, this book describes and analyses the metaphysical presuppositions that underwrite the technological use of experimental apparatus and instruments to explore, model, and understand nature. By revealing this metaphysical foundation, the author questions whether experimental physics is a natural and empirical science at all.
This Element introduces major issues in the epistemology of experimental physics through discussion of canonical physics experiments and some that have not yet received much philosophical attention. The primary challenge is to make sense of how physicists justify crucial decisions made in the course of empirical research. Judging a result as epistemically significant or as calling for further technical scrutiny of the equipment is one important context of such decisions. Judging whether the instrument has been calibrated, and which data should be included in the analysis are others. To what extent is it possible to offer philosophical analysis, systematization, and prescriptions regarding such decisions? To what extent can there be explicit epistemic justification for them? The primary aim of this Element is to show how a nuanced understanding of science in practice informs an epistemology of experimental physics that avoids strong social constructivism.
Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think that any adequate understanding of the quantum world will result in a radical reshaping of our classical world-view in some way or other. Whatever the world is like at the atomic scale, it is almost certainly not the swarm of particles pushed around by forces that is often presupposed. This book guides readers through the theory of quantum mechanics and its implications for metaphysics in a clear and accessible way. The theory and its various interpretations are presented with a minimum of technicality. The consequences of these interpretations for metaphysical debates concerning realism, indeterminacy, causation, determinism, holism, and individuality (among other topics) are explored in detail, stressing the novel form that the debates take given the empirical facts in the quantum domain. While quantum mechanics may not deliver unconditional pronouncements on these issues, the range of possibilities consistent with our knowledge of the empirical world is relatively small-and each possibility is metaphysically revisionary in some way. This book will appeal to researchers, students, and anybody else interested in how science informs our world-view.
With contributions by leading quantum physicists, philosophers and historians, this comprehensive A-to-Z of quantum physics provides a lucid understanding of key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional and new concepts, making it an indispensable resource for concise, up-to-date information about the many facets of quantum physics.
A sophisticated and original introduction to the philosophy of quantum mechanics from one of the world’s leading philosophers of physics In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic particle theory of deBroglie and Bohm; and the conceptually challenging Many Worlds theory of Everett. Each offers a radically different proposal for the nature of physical reality, but Maudlin shows that none of them are what they are generally taken to be.
Philosophical foundations of the physics of space-time This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity with enough detail to solve concrete physical problems while presenting general relativity in more qualitative terms. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more. Introduces nonphysicists to the philosophical foundations of space-time theory Provides a broad historical overview, from Aristotle to Einstein Explains special relativity geometrically, emphasizing the intrinsic structure of space-time Covers the Twins Paradox, Galilean relativity, time travel, and more Requires only basic algebra and no formal knowledge of physics
The Philosophy of Scientific Experimentation focuses on the identification and clarification of philosophical issues in experimental science.Since the late 1980s, the neglect of experiment by philosophers and historians of science has been replaced by a keen interest in the subject. In this volume, a number of prominent philosophers of experiment directly address basic theoretical questions, develop existing philosophical accounts, and offer novel perspectives on the subject, rather than rely exclusively on historical cases of experimental practice.Each essay examines one or more of six interconnected themes that run throughout the collection: the philosophical implications of actively and intentionally interfering with the material world while conducting experiments; issues of interpretation regarding causality; the link between science and technology; the role of theory in experimentation involving material and causal intervention; the impact of modeling and computer simulation on experimentation; and the philosophical implications of the design, operation, and use of scientific instruments.
The book is drawn from the Tarner lectures, delivered in Cambridge in 1993. It is concerned with the ultimate nature of reality, and how this is revealed by modern physical theories such as relativity and quantum theory. The objectivity and rationality of science are defended against the views of relativists and social constructionists. It is claimed that modern physics gives us a tentative and fallible, but nevertheless rational, approach to the nature of physical reality. The role of subjectivity in science is examined in the fields of relativity theory, statistical mechanics and quantum theory, and recent claims of an essential role for human consciousness in physics are rejected. Prospects for a 'Theory of Everything' are considered, and the related question of how to assess scientific progress is carefully examined.
This volume of new essays, written by leading philosophers of science, explores a broadly methodological question: what role should metaphysics play in our philosophizing about science? The essays address this question both through ground-level investigations of particular issues in the metaphysics of science and by more general methodological investigations.
In Experiment, Right or Wrong, Allan Franklin continues his investigation of the history and philosophy of experiment presented in his previous book, The Neglect of Experiment. In this new study, Franklin considers the fallibility and corrigibility of experimental results and presents detailed histories of two such episodes: 1) the experiment and the development of the theory of weak interactions from Fermi's theory in 1934 to the V-A theory of 1957 and 2) atomic parity violation experiments and the Weinberg-Salam unified theory of electroweak interactions of the 1970s and 1980s. In these episodes Franklin demonstrates not only that experimental results can be wrong, but also that theoretical calculations and the comparison between experiment and theory can also be incorrect. In the second episode, Franklin contrasts his view of an "evidence model" of science in which questions of theory choice, confirmation, and refutation are decided on the basis of reliable experimental evidence, with that proposed by the social constructivists.