Download Free On The Economy Of Plant Form And Function Book in PDF and EPUB Free Download. You can read online On The Economy Of Plant Form And Function and write the review.

This book summarizes the major recent advances in the economic analysis of plant behavior.
Recent studies that analyze the impact of various plant traits on whole-plant growth and competitive ability have provided insights into the selective pressures on characteristics such as leaf reflectivity, effective leaf size, stomatal conductance, size of photosynthetic enzyme pools, crown form, xylem structure, nitrogen fixation, and root versus shoot allocation. This research has reached an exciting stage, leading to quantitative predictions of favoured trends in these traits as a function of environmental parameters and fundamental physiological constraints. Such results reveal the importance of ecological patterns in plant form and physiology, and of evolutionary constraints on photosynthesis and primary productivity. On the Economy of Plant Form and Function summarizes the major recent advances in the economic analysis of plant behavior and suggests a framework for a unified, quantitative approach to understanding photosynthetic adaptations, their integration with other aspects of plant form, and their relationship to carbon balance and ultimate limits on plant productivity.
From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion’s pappus and the maple tree’s samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics—from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants’ roots, stems, and leaves—Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes.
Given the frequent movement of commercial plants outside their native location, the consistent and standard use of plant names for proper identification and communication has become increasingly important. This second edition of World Economic Plants: A Standard Reference is a key tool in the maintenance of standards for the basic science underlyin
This synthesis of the growing body of information from research on epiphytes and their relations with other tropical biota provides a comprehensive overview of basic functions, life history, evolution, and the place of epiphytes in complex tropical communities. Epiphytes comprise more than one-third of the tropical vascular flora in some tropical forests. Growing within tropical forest canopies, epiphytes are subject to severe environmental constraints, and their diverse adaptations make them a rich resource for studies of water balance, nutrition, reproduction and evolution.
In the course of evolution, a great variety of root systems have learned to overcome the many physical, biochemical and biological problems brought about by soil. This development has made them a fascinating object of scientific study. This volume gives an overview of how roots have adapted to the soil environment and which roles they play in the soil ecosystem. The text describes the form and function of roots, their temporal and spatial distribution, and their turnover rate in various ecosystems. Subsequently, a physiological background is provided for basic functions, such as carbon acquisition, water and solute movement, and for their responses to three major abiotic stresses, i.e. hard soil structure, drought and flooding. The volume concludes with the interactions of roots with other organisms of the complex soil ecosystem, including symbiosis, competition, and the function of roots as a food source.
Stems, of various sizes and shapes, are involved in most of the organic processes and interactions of plants, ranging from support, transport, and storage to development and protection. The stem itself is a crucially important intermediary: it links above- and below ground organs-connecting roots to leaves. An international team of leading researchers vividly illustrate that stems are more than pipes, more than simple connecting and supporting structures; rather stems are critical, anatomically distinct structures of enormous variability. It is, to an unappreciated extent, this variability that underpins both the diversity and the success of plants in myriad ecosystems. Plant Stems will be a valuable resource on form/function relationships for researchers and graduate-level students in ecology, evolutionary biology, physiology, development, genetics, agricultural sciences, and horticulture as they unravel the mechanisms and processes that allow organisms and ecosystems to function. - Syntheses of structural, physiological, and ecological functions of stems - Multiple viewpoints on how stem structure relates to performance - Highlights of major areas of plant biology long neglected
This book presents a whole-plant perspective on plant integrated responses to multiple stresses, including an analysis of how plants have evolved growth forms and phenological responses to cope with changing stress patterns in natural environments. - Explores stress responses at both the structural and process levels - Outlines structural, phenological, and physiological responses that optimize production under multiple stresses - Combines physiological and evolutionary perspectives
Plant Science, like the biological sciences in general, has undergone seismic shifts in the last thirty or so years. Of course science is always changing and metamorphosing, but these shifts have meant that modern plant science has moved away from its previous more agricultural and botanical context, to become a core biological discipline in its own right. However the sheer amount of information that is accumulating about plant science, and the difficulty of grasping it all, understanding it and evaluating it intelligently, has never been harder for the new generation of plant scientists or, for that matter, established scientists. And that is precisely why this Handbook of Plant Science has been put together. Discover modern, molecular plant sciences as they link traditional disciplines! Derived from the acclaimed Encyclopedia of Life Sciences! Thorough reference of up-to-the minute, reliable, self-contained, peer-reviewed articles – cross-referenced throughout! Contains 255 articles and 48 full-colour pages, written by top scientists in each field! The Handbook of Plant Science is an authoritative source of up-to-date, practical information for all teachers, students and researchers working in the field of plant science, botany, plant biotechnology, agriculture and horticulture.