Download Free On The Compression Failure Of Plain Concrete Book in PDF and EPUB Free Download. You can read online On The Compression Failure Of Plain Concrete and write the review.

J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.
Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods – until now. So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest. The Theory of Critical Distances begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author's own consultancy work. The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis. - Comprehensive collection of published data, plus new data from the author's own laboratories - A simple 'how-to-do-it' exposition of the method, plus examples and case studies - Detailed theoretical treatment - Covers all classes of materials: metals, polymers, ceramics and composites - Includes fracture, fatigue, fretting, size effects and multiaxial loading
This design code for concrete structures is the result of a complete revision to the former Model Code 1978, which was produced jointly by CEB and FIP. The 1978 Model Code has had a considerable impact on the national design codes in many countries. In particular, it has been used extensively for the harmonisation of national design codes and as basic reference for Eurocode 2. The 1990 Model Code provides comprehensive guidance to the scientific and technical developments that have occurred over the past decade in the safety, analysis and design of concrete structures. It has already influenced the codification work that is being carried out both nationally and internationally and will continue so to do.
Developments in the Formulation and Reinforcement of Concrete, Second Edition, presents the latest developments on topics covered in the first edition. In addition, it includes new chapters on supplementary cementitious materials, mass concrete, the sustainably of concrete, service life prediction, limestone cements, the corrosion of steel in concrete, alkali-aggregate reactions, and concrete as a multiscale material. The book's chapters introduce the reader to some of the most important issues facing today's concrete industry. With its distinguished editor and international team of contributors, users will find this to be a must-have reference for civil and structural engineers. - Summarizes a wealth of recent research on structural concrete, including material microstructure, concrete types, and variation and construction techniques - Emphasizes concrete mixture design and applications in civil and structural engineering - Reviews modern concrete materials and novel construction systems, such as the precast industry and structures requiring high-performance concrete
Ultra High Performance Concrete (UHPC) is characterized by a very high compressive strength which may reach more than 200 MPa. The behavior of this material under tension and compression actions has been established to be very brittle in nature. Discontinuous fibers (normally steel fibers) are usually added to the UHPC mix to introduce ductility. In order to investigate the beneficial effects of using fiber reinforced UHPC in structural members subjected to torsion, a series of experimental tests on 17 UHPC beams subjected to pure torsion were carried out. The test beams consisted of plain UHPC beams, UHPC beams reinforced with steel fibers only, UHPC reinforced with steel fibers and different combinations of traditional longitudinal and transverse reinforcement. The plain UHPC beams showed very brittle behavior, whereas the UHPC beams with steel fibers only showed a post cracking ductile behavior. The addition of little steel fiber volume (e.g. 0.5 %) to the plain UHPC beams enhanced the ductility. The enhancement at the ultimate capacity amounts to about 20 %. Meanwhile, the steel fibers with 0.9 % by volume showed much enhanced ductility and a maximum enhancement of the torsional carrying capacity up to 32 %. The addition of moderate steel fiber volume (e.g. 0.9 %) to one type of traditional reinforcement (either longitudinal or transverse) accomplished an effective post cracking torsional carrying mechanism. The steel fibers shows a tendency to replace the missing type of traditional reinforcement, however this should be confirmed by more tests and by using higher steel fiber volumes. A series of experimental tests on fiber reinforced UHPC prisms to investigate the post cracking shear strength and stiffness of the used UHPC mix (e.g. M3Q) was conducted. The results of these tests revealed that this fine grained UHPC mix has a weak post cracking shear behavior. The results of these tests were used later in the Finite Element (F.E) model. An analytical model based on the well known thin-walled tube analogy was developed in order to estimate the torsional carrying capacity of beams under pure torsion having different combinations of steel fibers and traditional reinforcement. The comparison between the test and model results showed very good agreement for all cases. A finite element model based on calibrated small scale tests was developed using ATENA F.E. package to predict the full load-deformation behavior of the test beams. The predictions of the model show very good agreement with the test results.
Constitutive Equations for Engineering Materials, Volume 1: Elasticity and Modeling, Revised Edition focuses on theories on elasticity and plasticity of engineering materials. The book first discusses vectors and tensors. Coordinate systems, vector algebra, scalar products, vector products, transformation of coordinates, indicial notation and summation convention, and triple products are then discussed. The text also ponders on analysis of stress and strain and presents numerical analysis. The book then discusses elastic stress-strain relations. Basic assumptions; need for elastic models; isotropic linear stress-strain relations; principle of virtual work; strain energy and complementary energy density in elastic solids; and incremental relations grounded on secant moduli are described. The text also explains linear elasticity and failure criteria for concrete and non-linear elasticity and hypoelastic models for concrete. The selection further tackles soil elasticity and failure criteria. Mechanical behavior of soils; failure criteria of soils; and incremental stress-strain models based on modification of the isotropic linear elastic formulation are considered. The text is a good source of data for readers interested in studying the elasticity and plasticity of engineering materials.