Download Free On Surface Synthesis Of Organic Nanostructures And Post Synthetic Treatments Book in PDF and EPUB Free Download. You can read online On Surface Synthesis Of Organic Nanostructures And Post Synthetic Treatments and write the review.

Synthesis, Functionalization and Surface Treatment of Nanoparticles is an area of crucial importance in the emerging field of nanotechnology. Controlling the surface chemical composition and mastering its modification at the nanometer scale are critical issues for high-added value applications involving nanoparticles. The basic applications of surface functionalization range from altering the wetting or adhesion characteristics and improving the nanoparticles dispersion in matrices to enhancing the catalytic properties and ordering the interfacial region, and such. The creation of specific surface sites on nanoparticles for selective molecular attachment is considered a promising approach for their applications in nanofabrication, nanopatterning, selfassembly, nanosensors, bioprobes, drug delivery, pigments, photocatalysis, LEDs, etc. This book presents novel and improved synthesis methods and approaches for controlling and functionalizing the nanoparticle surfaces to enhance the overall performance of the nanoparticles for targeted applications.
This book contains the contributions of selected young chemists from the field of nanotechnology and material sciences. The contributions are grouped under the following umbrella topics: Self assembly Nanomaterials Molecular Machinery This volume is an indispensable read for all materials scientists, organic, and inorganic chemists, Ph.D. students in chemistry and material sciences interested in seeing what tomorrow's chemistry will look like.
Nano-bioimaging is a real-time observation method for the study of biological processes in subcellular structures and entire cells. This technique aims to interfere as little as possible with life processes using nanoscale materials and probes. In this method, nanoscale photon source is often used for imaging, and 3D structure of the observed specimen is studied in detail without physical interference. Over the last decade, further boost in bioimaging has led to increase the nano-bioimaging impact that includes many improvements in the data analysis method, image processing, and molecular imaging technology. However, to increase the usage of nano-bioimaging, several developments in the field of diagnosis accuracy, photobleaching prevention, and controlling of the fluorescence resonance energy transfer (FRET) must be achieved. The purpose of this book is to provide a perspective on the current status of nano-bioimaging technologies.
Advances in Nanosensors for Biological and Environmental Analysis presents the current state-of-art in nanosensors for biological and environmental analysis, also covering commercial aspects. Broadly, the book provides detailed information on the emergence of different types of nanomaterials as transduction platforms used in the development of nanosensors. These include carbon nanotubes, graphene, 2-D transition metal dichalcogenides, conducting polymers and metal organic frameworks. Additional topics include sections on the way nanosensors have inspired new product development in various types of biological and environmental applications that are currently available and on the horizon. - Features detailed information on various types of biological and environmental nanosensors - Gives particular attention to the different categories of advanced functional interfaces, processes for their development, and application areas - Includes the current state-of-the-art in terms of commercial aspects
Magnetic nanoparticles (MNPs) uniquely combine superparamagnetic performance with dimensions that are smaller than or similar size to molecular analytes. Recently, functionalized MNPs are predicted to be a driver for technology and business in this century and hold the promise of high performance materials that will significantly influence all aspects of society. Functionalized MNPs are creating new possibilities for development and innovation in different analytical procedures. Despite their participation in modern development, they are in their infancy and largely unexplored for their practical applications in analysis. This book will provide quality research and practical guidance to analytical scientists, researchers, engineers, quality control experts and laboratory specialists. It covers applications of functionalized MNPs in all stages of analytical procedures. Their incorporation has opened new possibilities for sensing, extraction and detection enabling an increase in sensitivity, magnifying precision and improvement in the detection limit of modern analysis. Toxicity, safety, risk, and legal aspects of functionalized MNPs and the future of analytical chemistry with respect to their use is covered. The book provides an integrated approach for advanced analytical methods and techniques for postgraduates and researchers looking for a reference outlining new and advanced techniques surrounding the applications of functionalized nanomaterials in analytical chemistry.
Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work.
Advanced Materials for Wastewater Treatment and Desalination: Fundamentals to Applications offers a comprehensive overview of current progress in the development of advanced materials used in wastewater treatment and desalination. The book is divided into two major sections, covering both fundamentals and applications. This book: Describes the synthesis and modification of advanced materials, including metal oxides, carbonaceous materials, perovskite-based materials, polymer-based materials, and advanced nanocomposites Examines relevant synthesis routes and mechanisms as well as correlates materials' properties with their characterization Details new fabrication techniques including green synthesis, solvent-free, and energy-saving synthesis approaches Highlights various applications, such as removal of organic contaminants, discoloration of dye wastewater, petrochemical wastewater treatment, and electrochemically-enhanced water treatment With chapters written by leading researchers from around the world, this book will be of interest to chemical, materials, and environmental engineers working on progressing materials applications to improve water treatment technologies.
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.
Modern Inorganic Synthetic Chemistry, Second Edition captures, in five distinct sections, the latest advancements in inorganic synthetic chemistry, providing materials chemists, chemical engineers, and materials scientists with a valuable reference source to help them advance their research efforts and achieve breakthroughs. Section one includes six chapters centering on synthetic chemistry under specific conditions, such as high-temperature, low-temperature and cryogenic, hydrothermal and solvothermal, high-pressure, photochemical and fusion conditions. Section two focuses on the synthesis and related chemistry problems of highly distinct categories of inorganic compounds, including superheavy elements, coordination compounds and coordination polymers, cluster compounds, organometallic compounds, inorganic polymers, and nonstoichiometric compounds. Section three elaborates on the synthetic chemistry of five important classes of inorganic functional materials, namely, ordered porous materials, carbon materials, advanced ceramic materials, host-guest materials, and hierarchically structured materials. Section four consists of four chapters where the synthesis of functional inorganic aggregates is discussed, giving special attention to the growth of single crystals, assembly of nanomaterials, and preparation of amorphous materials and membranes. The new edition's biggest highlight is Section five where the frontier in inorganic synthetic chemistry is reviewed by focusing on biomimetic synthesis and rationally designed synthesis. - Focuses on the chemistry of inorganic synthesis, assembly, and organization of wide-ranging inorganic systems - Covers all major methodologies of inorganic synthesis - Provides state-of-the-art synthetic methods - Includes real examples in the organization of complex inorganic functional materials - Contains more than 4000 references that are all highly reflective of the latest advancement in inorganic synthetic chemistry - Presents a comprehensive coverage of the key issues involved in modern inorganic synthetic chemistry as written by experts in the field
Surface engineering can be defined as an enabling technology used in a wide range of industrial activities. Surface engineering was founded by detecting surface features which destroy most of pieces, e.g. abrasion, corrosion, fatigue, and disruption; then it was recognized, more than ever, that most technological advancements are constrained with surface requirements. In a wide range of industry (such as gas and oil exploitation, mining, and manufacturing), the surfaces generate an important problem in technological advancement. Passing time shows us new interesting methods in surface engineering. These methods usually apply to enhance the surface properties, e.g. wear rate, fatigue, abrasion, and corrosion resistance. This book collects some of new methods in surface engineering.