Download Free On Modern Approaches Of Hamilton Jacobi Equations And Control Problems With Discontinuities Book in PDF and EPUB Free Download. You can read online On Modern Approaches Of Hamilton Jacobi Equations And Control Problems With Discontinuities and write the review.

This monograph presents the most recent developments in the study of Hamilton-Jacobi Equations and control problems with discontinuities, mainly from the viewpoint of partial differential equations. Two main cases are investigated in detail: the case of codimension 1 discontinuities and the stratified case in which the discontinuities can be of any codimensions. In both, connections with deterministic control problems are carefully studied, and numerous examples and applications are illustrated throughout the text. After an initial section that provides a “toolbox” containing key results which will be used throughout the text, Parts II and III completely describe several recently introduced approaches to treat problems involving either codimension 1 discontinuities or networks. The remaining sections are concerned with stratified problems either in the whole space R^N or in bounded or unbounded domains with state-constraints. In particular, the use of stratified solutions to treat problems with boundary conditions, where both the boundary may be non-smooth and the data may present discontinuities, is developed. Many applications to concrete problems are explored throughout the text – such as Kolmogorov-Petrovsky-Piskunov (KPP) type problems, large deviations, level-sets approach, large time behavior, and homogenization – and several key open problems are presented. This monograph will be of interest to graduate students and researchers working in deterministic control problems and Hamilton-Jacobi Equations, network problems, or scalar conservation laws.
This monograph presents the most recent developments in the study of Hamilton-Jacobi Equations and control problems with discontinuities, mainly from the viewpoint of partial differential equations. Two main cases are investigated in detail: the case of codimension 1 discontinuities and the stratified case in which the discontinuities can be of any codimensions. In both, connections with deterministic control problems are carefully studied, and numerous examples and applications are illustrated throughout the text. After an initial section that provides a “toolbox” containing key results which will be used throughout the text, Parts II and III completely describe several recently introduced approaches to treat problems involving either codimension 1 discontinuities or networks. The remaining sections are concerned with stratified problems either in the whole space R^N or in bounded or unbounded domains with state-constraints. In particular, the use of stratified solutions to treat problems with boundary conditions, where both the boundary may be non-smooth and the data may present discontinuities, is developed. Many applications to concrete problems are explored throughout the text – such as Kolmogorov-Petrovsky-Piskunov (KPP) type problems, large deviations, level-sets approach, large time behavior, and homogenization – and several key open problems are presented. This monograph will be of interest to graduate students and researchers working in deterministic control problems and Hamilton-Jacobi Equations, network problems, or scalar conservation laws.
Complexity and Complex Thermoeconomic Systems describes the properties of complexity and complex thermo-economic systems as the consequence of formulations, definitions, tools, solutions and results consistent with the best performance of a system. Applying to complex systems contemporary advanced techniques, such as static optimization, optimal control, and neural networks, this book treats the systems theory as a science of general laws for functional integrities. It also provides a platform for the discussion of various definitions of complexity, complex hierarchical structures, self-organization examples, special references, and historical issues. This book is a valuable reference for scientists, engineers and graduated students in chemical, mechanical, and environmental engineering, as well as those in physics, ecology and biology, helping them better understand the complex thermodynamic systems and enhance their technical skills in research. - Provides a lucid presentation of the dynamical properties of thermoeconomic systems - Includes original graphical material that illustrates the properties of complex systems - Written by a first-class expert in the field of advanced methods in thermodynamics
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
* A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Numerous examples highlight this treatment of the use of linear quadratic Gaussian methods for control system design. It explores linear optimal control theory from an engineering viewpoint, with illustrations of practical applications. Key topics include loop-recovery techniques, frequency shaping, and controller reduction. Numerous examples and complete solutions. 1990 edition.
A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.