Download Free On Issues Concerning Flow Separation And Vortical Flows In Three Dimensions Book in PDF and EPUB Free Download. You can read online On Issues Concerning Flow Separation And Vortical Flows In Three Dimensions and write the review.

This review provides an illustrated introduction laying the knowledge base for vortical flows about three-dimensional configurations that are of typical interest to aerodynamicists and researchers in fluid mechanics. The paper then compiles a list of ten issues, again in illustrative format, that the authors deem important to the understanding of complex vortical flows. These issues and our responses to them provide, it is hoped, a skeletal framework on which to hang the ensuing conference proceedings. (Author).
This book develops concepts and a methodology for a rational description of the organization of three-dimensional flows considering, in particular, the case where the flow is the place of separations. The descriptive analysis based on the critical point theory of Poincaré develops conventional but rather unfamiliar considerations from aerodynamicists, who face the understanding of complex flows including multiple separation lines and vortices. These problems concern industrial sectors where aerodynamics plays a key role, such as aerospace, ground vehicles, buildings, etc. Contents 1. Skin Friction Lines Pattern and Critical Points. 2. Separation Streamsurfaces and Vortex Structures. 3. Separated Flow on a Body. 4. Vortex Wake of Wings and Slender Bodies. 5. Separation Induced by an Obstacle or a Blunt Body. 6. Reconsideration of the Two-Dimensional Separation. 7. Concluding Remarks. About the Authors Jean Délery is a Supaero (French National Higher School of Aeronautics and Space) engineer who has worked at Onera (French national aerospace research center) since 1964. He has participated in several major French and European aerospace programs, is the author of many scientific publications, and has occupied various teaching positions particularly at Supaero, the University of Versailles-Saint-Quentin, Ecole polytechnique in France and “La Sapienza” University in Rome, Italy. He is currently emeritus adviser at Onera.
Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation. Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapters consider the study of flow separation on the two-dimensional body, flow separation on three-dimensional body shape and particularly on bodies of revolution. This book discusses as well the analytical solutions of the unsteady flow separation. The final chapter deals with the purpose of separation flow control to raise efficiency or to enhance the performance of vehicles and fluid machineries involving various engineering applications. This book is a valuable resource for engineers.
An experimental and computational study of the impact of a vortex with a body oriented normal to the vortex axis was performed. Particular focus was placed on understanding characteristics of the secondary vorticity ejected from the body and the interaction of the secondary vorticity with the primary vortex. Since both onset of boundary layer separation and the form of the secondary vorticity structures are sensitive to variation of the velocity normal to the body axis, the effect of normal velocity on vortex-body interaction was carefully examined. The physical features of the flow evolution were categorized in terms of an impact parameter and a thickness parameter, which respectively represent ratios of velocity and length scales associated with the vortex to those associated with the flow in the absence of the vortex. Experiments were performed using a combination of laser-induced fluorescence (LIF) flow visualization and particle-image velocimetry (PIV) in a water tank to examine the form of the secondary vorticity structures with both "high" and "low" values of the impact parameter for normal vortex interaction with a circular cylinder and with a thin blade. A new type of Lagrangian vorticity method based on a tetrahedral mesh was developed and applied to compute the secondary vorticity evolution during vortex-cylinder interaction. Computations were also performed for model problems to examine in detail wrapping of a vortex loop around a columnar vortex and impulsive cutting of a columnar vortex with finite axial flow.
Supersonic flows over a sharp and a flat-faced blunt fin mounted on a flat plate are simulated numerically. Several basic issues involved in the resultant three-dimensional steady flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of a grid resolution on the origin of the line of separation. Various shock strengths are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of secondary separation. The length of separation ahead of the flat-faced blunt fin, bifurcation of a horseshoe vortex, and the accessibility of a closed-type separation are investigated. The usual interpretation of the flow field from previous studies and new interpretations arising from the present simulation are discussed. Hung, Ching-Mao Ames Research Center ...
This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.
This study is motivated by three-dimensional flows about protrusions and cavities with an arbitrary angle between the external flow and rigid elements. The novel type of a "building block" cavity flow is proposed where the cavity lid moves along its diagonal (Case A). The proposed case is taken as a typical representative of essentially three-dimensional highly separated vortical flows having simple single-block rectangular geometry of computational domain. Computational results are compared to the previous studies where the lid moves parallel to the cavity side walls (Case B). These 3-D lid-driven cavity flows are studied by numerical modeling using second-order upwind schemes for convective terms. The volume and plane integrals of primary and transversal momentum are introduced to compare cases in a quantitative way. For the laminar flow in the cubic cavity, the integral momentum of the secondary flow (which is perpendicular to the lid direction) is about an order of magnitude larger than that in Case B. In Case A, the number of secondary vortices substantially depends on the Re number. The secondary vortices in the central part of the cavity in Case A distinguishes it from Case B, where only corner secondary vortices appear. For a rectangular 3-D 3: 1 : 1 cavity the integral momentum of the secondary flow in Case A is an order of magnitude larger than that in the benchmark cases. The flow field in Case A includes a curvilinear separation line and non-symmetrical vortices which are discussed in the paper. The estimated Goertler number is approximately 4.5 times larger in Case A than that in Case B for the same Re number. This indicates that in Case A the flow becomes unsteady for smaller Re numbers than in Case B. For developed turbulent flow in the cubic cavity, the yaw effect on amplifcation of secondary flow is as strong as that for the laminar flow despite the more complex vortical flow pattern in benchmark case B.