Download Free On Extreme Value Statistics Book in PDF and EPUB Free Download. You can read online On Extreme Value Statistics and write the review.

Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
Focuses on theoretical results along with applications All the main topics covering the heart of the subject are introduced to the reader in a systematic fashion Concentration is on the probabilistic and statistical aspects of extreme values Excellent introduction to extreme value theory at the graduate level, requiring only some mathematical maturity
This important book provides an up-to-date comprehensive and down-to-earth survey of the theory and practice of extreme value distributions OCo one of the most prominent success stories of modern applied probability and statistics. Originated by E J Gumbel in the early forties as a tool for predicting floods, extreme value distributions evolved during the last 50 years into a coherent theory with applications in practically all fields of human endeavor where maximal or minimal values (the so-called extremes) are of relevance. The book is of usefulness both for a beginner with a limited probabilistic background and to expert in the field. Sample Chapter(s). Chapter 1.1: Historical Survey (139 KB). Chapter 1.2: The Three Types of Extreme Value Distributions (146 KB). Chapter 1.3: Limiting Distributions and Domain of Attraction (210 KB). Chapter 1.4: Distribution Function and Moments of Type 1 Distribution (160 KB). Chapter 1.5: Order Statistics, Record Values and Characterizations (175 KB). Contents: Univariate Extreme Value Distributions; Generalized Extreme Value Distributions; Multivariate Extreme Value Distributions. Readership: Applied probabilists, applied statisticians, environmental scientists, climatologists, industrial engineers and management experts."
It appears that we live in an age of disasters: the mighty Missis sippi and Missouri flood millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical failure and the seemingly ever increasing wind speeds make the storms more and more frightening. While all these may seem to be unexpected phenomena to the man on the street, they are actually happening according to well defined rules of science known as extreme value theory. We know that records must be broken in the future, so if a flood design is based on the worst case of the past then we are not really prepared against floods. Materials will fail due to fatigue, so if the body of an aircraft looks fine to the naked eye, it might still suddenly fail if the aircraft has been in operation over an extended period of time. Our theory has by now penetrated the so cial sciences, the medical profession, economics and even astronomy. We believe that our field has come of age. In or~er to fully utilize the great progress in the theory of extremes and its ever increasing acceptance in practice, an international conference was organized in which equal weight was given to theory and practice. This book is Volume I of the Proceedings of this conference. In selecting the papers for Volume lour guide was to have authoritative works with a large variety of coverage of both theory and practice.
Because of its potential to ...predict the unpredictable,... extreme value theory (EVT) and methodology is currently receiving a great deal of attention from statistical and mathematical researchers. This book brings together world-recognized authorities in their respective fields to provide expository chapters on the applications, use, and theory
Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.
This book is a comprehensive guide to extreme value theory in engineering. Written for the end user with intermediate and advanced statistical knowledge, it covers classical methods as well as recent advances. A collection of 150 examples illustrates the theoretical results and takes the reader from simple applications through complex cases of dependence.
Extreme value theory (EVT) deals with extreme (rare) events, which are sometimes reported as outliers. Certain textbooks encourage readers to remove outliers—in other words, to correct reality if it does not fit the model. Recognizing that any model is only an approximation of reality, statisticians are eager to extract information about unknown distribution making as few assumptions as possible. Extreme Value Methods with Applications to Finance concentrates on modern topics in EVT, such as processes of exceedances, compound Poisson approximation, Poisson cluster approximation, and nonparametric estimation methods. These topics have not been fully focused on in other books on extremes. In addition, the book covers: Extremes in samples of random size Methods of estimating extreme quantiles and tail probabilities Self-normalized sums of random variables Measures of market risk Along with examples from finance and insurance to illustrate the methods, Extreme Value Methods with Applications to Finance includes over 200 exercises, making it useful as a reference book, self-study tool, or comprehensive course text. A systematic background to a rapidly growing branch of modern Probability and Statistics: extreme value theory for stationary sequences of random variables.
In the 18th century, statisticians sometimes worked as consultants to gamblers. In order to answer questions like "If a fair coin is flipped 100 times, what is the probability of getting 60 or more heads?", Abraham de Moivre discovered the so-called "normal curve". Independently, Pierre-Simon Laplace derived the central limit theorem, where the normal distribution acts as the limit for the distribution of the sample mean. Nowadays, statisticians sometimes work as consultants for economists, to whom the normal distribution is far from a satisfactory model. For example, one may need to model large-impact financial events in order to to answer questions like "What is the probability of getting into a crisis period similar to the credit squeeze in 2007 in the coming 10 years?". At first glance, estimating the chances of events that rarely happen or even have never happened before sounds like a "mission impossible". The development of Extreme Value Theory (EVT) shows that it is in fact possible to achieve this goal. Different from the central limit theorem, Extreme Value Theory starts from the limit distribution of the sample maximum. Initiated by M. Frechet, R. Fisher and R. von Mises, the limit theory completed by B. Gnedenko, gave the fundamental assumption in EVT, the "extreme value condition". Statistically, the extreme value condition provides a semi-parametric model for the tails of distribution functions. Therefore it can be applied to evaluate the rare events. On the other hand, since the assumption is rather general and natural, the semi-parametric model can have extensive applications in numerous felds.