Download Free On Dworks P Adic Formal Congruences Theorem And Hypergeometric Mirror Maps Book in PDF and EPUB Free Download. You can read online On Dworks P Adic Formal Congruences Theorem And Hypergeometric Mirror Maps and write the review.

Using Dwork's theory, the authors prove a broad generalization of his famous -adic formal congruences theorem. This enables them to prove certain -adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold for any prime number and not only for almost all primes. Furthermore, using Christol's functions, the authors provide an explicit formula for the “Eisenstein constant” of any hypergeometric series with rational parameters. As an application of these results, the authors obtain an arithmetic statement “on average” of a new type concerning the integrality of Taylor coefficients of the associated mirror maps. It contains all the similar univariate integrality results in the literature, with the exception of certain refinements that hold only in very particular cases.
​MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in its second year, 2017: - Hypergeometric Motives and Calabi–Yau Differential Equations - Computational Inverse Problems - Integrability in Low-Dimensional Quantum Systems - Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of Gilbarg and Trudinger’s Book - Combinatorics, Statistical Mechanics, and Conformal Field Theory - Mathematics of Risk - Tutte Centenary Retreat - Geometric R-Matrices: from Geometry to Probability The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hypergeometric series and shows that values of at some points can be expressed in terms of gamma functions, together with certain elementary functions. The author tabulates the values of that can be obtained with this method and finds that this set includes almost all previously known values and many previously unknown values.
Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory is the type spectrum of some homogeneous model of . Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.
The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for sl and sl and by Mazorchuk-Stroppel and Sussan for sl . The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is sl , the author shows that these categories agree with certain subcategories of parabolic category for gl .
In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.
The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.
The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost with , probability measures in and absolutely continuous w.r.t. . The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in , where are disjoint regions such that the construction of an optimal map is simpler than in the original problem, and then to obtain by piecing together the maps . When the norm is strictly convex, the sets are a family of -dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map is straightforward provided one can show that the disintegration of (and thus of ) on such segments is absolutely continuous w.r.t. the -dimensional Hausdorff measure. When the norm is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set and then in . The strategy is sufficiently powerful to be applied to other optimal transportation problems.
The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by “holes”) are present in the lattice. Their work generalizes to the discrete spatial setting the results obtained in Berestycki, Hamel, and Matuno (2009) for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized disturbances.
The authors define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. The authors pair the random measures with deterministic families of parametrized measures , and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of . This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals they establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, and (d) rapid Fourier decay. Among other applications, the authors obtain an answer to a question of I. Łaba in connection to the restriction problem for fractal measures.