Download Free On Dobrushins Way From Probability Theory To Statistical Physics Book in PDF and EPUB Free Download. You can read online On Dobrushins Way From Probability Theory To Statistical Physics and write the review.

Fellow Russian mathematicians discuss and extend the works of Dobrushin (1929-95,), who worked in many areas of mathematics, but had deepest influence on mathematical physics and was one of the founders of the rigorous study of statistical physics. The 15 technical papers are flanked by a short biography and recollections by colleagues and students. The topics include the lower spectral branch of the generator of the stochastic dynamics for the classical Heisenberg model, non-symmetric simple random walks along orbits of ergodic automorphisms, the Cramer transform and large deviations on three- dimensional Lobachevsky space, and dynamics of Ising-spin systems at zero temperature. No index is provided. Annotation copyrighted by Book News, Inc., Portland, OR.
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
R. Dobrushin worked in several branches of mathematics (probability theory, information theory), but his deepest influence was on mathematical physics. He was one of the founders of the rigorous study of statistical physics. When Dobrushin began working in that direction in the early sixties, only a few people worldwide were thinking along the same lines. Now there is an army of researchers in the field. This collection is devoted to the memory of R. L. Dobrushin. The authors who contributed to this collection knew him quite well and were his colleagues. The title, "On Dobrushin's Way", is mea.
Charles M. (Chuck) Newman has been a leader in Probability Theory and Statistical Physics for nearly half a century. This three-volume set is a celebration of the far-reaching scientific impact of his work. It consists of articles by Chuck’s collaborators and colleagues across a number of the fields to which he has made contributions of fundamental significance. This publication was conceived during a conference in 2016 at NYU Shanghai that coincided with Chuck's 70th birthday. The sub-titles of the three volumes are: I. Spin Glasses and Statistical Mechanics II. Brownian Web and Percolation III. Interacting Particle Systems and Random Walks The articles in these volumes, which cover a wide spectrum of topics, will be especially useful for graduate students and researchers who seek initiation and inspiration in Probability Theory and Statistical Physics.
The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians. - Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science - Roadmap to the next decade of mathematical statistical mechanics - Volume for reference years to come
The book is devoted to the study of the correlation effects in many-particle systems. It presents the advanced methods of quantum statistical mechanics (equilibrium and nonequilibrium), and shows their effectiveness and operational ability in applications to problems of quantum solid-state theory, quantum theory of magnetism and the kinetic theory. The book includes description of the fundamental concepts and techniques of analysis following the approach of N N Bogoliubov's school, including recent developments. It provides an overview that introduces the main notions of quantum many-particle physics with the emphasis on concepts and models.This book combines the features of textbook and research monograph. For many topics the aim is to start from the beginning and to guide the reader to the threshold of advanced researches. Many chapters include also additional information and discuss many complex research areas which are not often discussed in other places. The book is useful for established researchers to organize and present the advanced material disseminated in the literature. The book contains also an extensive bibliography.The book serves undergraduate, graduate and postgraduate students, as well as researchers who have had prior experience with the subject matter at a more elementary level or have used other many-particle techniques.
This volume is dedicated to F. I. Karpelevich, an outstanding Russian mathematician who made important contributions to applied probability theory. The book contains original papers focusing on several areas of applied probability and its uses in modern industrial processes, telecommunications, computing, mathematical economics, and finance. It opens with a review of Karpelevich's contributions to applied probability theory and includes a bibliography of his works. Other articles discuss queueing network theory, in particular, in heavy traffic approximation (fluid models). The book is suitable for graduate students, theoretical and applied probabilists, computer scientists, and engineers.
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
The second half of the 20th century and its conclusion : crisis in the physics and mathematics community in Russia and in the West -- Interview with Sergey P. Novikov -- The w-function of the KdV hierarchy -- On the zeta functions of a meromorphic germ in two variables -- On almost duality for Frobenius manifolds -- Finitely presented semigroups in knot theory. Oriented case -- Topological robotics : subspace arrangements and collision free motion planning -- The initial-boundary value problem on the interval for the nonlinear Schrödinger equation. The algebro-geometric approach. I -- On odd Laplace operators. II -- From 2D Toda hierarchy to conformal maps for domains of the Riemann sphere --Integrable chains on algebraic curves -- Fifteen years of KAM for PDE -- Graded filiform Lie algebras and symplectic nilmanifolds --Adiabatic limit in the Seiberg-Witten equations -- Affine Krichever-Novikov algebras, their representations and applications -- Tame integrals of motion and o-minimal structures.
This volume, devoted to the 70th birthday of A. L. Onishchik, contains a collection of articles by participants in the Moscow Seminar on Lie Groups and Invariant Theory headed by E. B. Vinberg and A. L. Onishchik. The book is suitable for graduate students and researchers interested in Lie groups and related topics.