Download Free On Chip Power Delivery And Management Book in PDF and EPUB Free Download. You can read online On Chip Power Delivery And Management and write the review.

This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.
This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power distribution systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this second edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.
This book provides insight into the behavior and design of power distribution systems for high speed, high complexity integrated circuits. Also presented are criteria for estimating minimum required on-chip decoupling capacitance. Techniques and algorithms for computer-aided design of on-chip power distribution networks are also described; however, the emphasis is on developing circuit intuition and understanding the principles that govern the design and operation of power distribution systems.
"The technology behind integrated circuits is growing rapidly with billions of devices integrated on the same die. These devices operate at several gigahertz and require tens of watts, with voltage levels below a volt. Highly complicated on-chip networks manage and support the operation of these billions of devices. Resources, such as metal, power, and area, are however limited; these resources must be efficiently utilized. The increase in the number of metal layers within an integrated circuit does not keep up with device scaling, creating challenges in global signaling, synchronization, and power delivery. The objective is to address design, analysis, and optimization challenges for highly complicated structures. Power distribution networks, global signal networks, and monolithic substrate are considered in this dissertation. An effective impedance model of a monolithic substrate is developed within this dissertation, achieving high accuracy in estimating power/ground noise characteristics. A methodology for simultaneously inserting shields and repeaters is described, optimizing multiple resources for global signal interconnects. A closed-form model of the self- and mutual inductance of an interdigitated power and ground distribution network is described, providing less than 5% error for a typical power distribution network. The optimal width of the metal lines that minimizes the impedance of the power distribution network is determined, significantly enhancing the performance of an integrated circuit. A design methodology is also described for a multi-layer power distribution network, achieving enhanced reliability by equalizing the current density over multiple metal layers. Furthermore, a novel link breaking methodology for a mesh structured power distribution network is introduced, reducing coupling noise while improving the maximum operating frequency, on average, by 12%. Finally, a globally integrated power and clock distribution network is presented which utilizes a single network to distribute both global signals; thereby reducing the metal requirement. The performance of integrated circuits is highly affected by the power delivery system. The primary focus of this dissertation is the development of design and analysis methodologies for on-chip power delivery systems. Integrated circuits developed with these novel design methodologies will provide higher performance, while simultaneously consuming less power, area, and metal"--Leaves viii-ix.
This books focuses on recent break-throughs in the development of a variety of photonic devices, serving distances ranging from mm to many km, together with their electronic counter-parts, e.g. the drivers for lasers, the amplifiers following the detectors and most important, the relevant advanced VLSI circuits. It explains that as a consequence of the increasing dominance of optical interconnects for high performance workstation clusters and supercomputers their complete design has to be revised. This book thus covers for the first time the whole variety of interdependent subjects contributing to green photonics and electronics, serving communication and energy harvesting. Alternative approaches to generate electric power using organic photovoltaic solar cells, inexpensive and again energy efficient in production are summarized. In 2015, the use of the internet consumed 5-6% of the raw electricity production in developed countries. Power consumption increases rapidly and without some transformational change will use, by the middle of the next decade at the latest, the entire electricity production. This apocalyptic outlook led to a redirection of the focus of data center and HPC developers from just increasing bit rates and capacities to energy efficiency. The high speed interconnects are all based on photonic devices. These must and can be energy efficient but they operate in an electronic environment and therefore have to be considered in a wide scope that also requires low energy electronic devices, sophisticated circuit designs and clever architectures. The development of the next generation of high performance exaFLOP computers suffers from the same problem: Their energy consumption based on present device generations is essentially prohibitive.
Power Management Integrated Circuits and Technologies delivers a modern treatise on mixed-signal integrated circuit design for power management. Comprised of chapters authored by leading researchers from industry and academia, this definitive text: Describes circuit- and architectural-level innovations that meet advanced power and speed capabilities Explores hybrid inductive-capacitive converters for wide-range dynamic voltage scaling Presents innovative control techniques for single inductor dual output (SIDO) and single inductor multiple output (SIMO) converters Discusses cutting-edge design techniques including switching converters for analog/RF loads Compares the use of GaAs pHEMTs to CMOS devices for efficient high-frequency switching converters Thus, Power Management Integrated Circuits and Technologies provides comprehensive, state-of-the-art coverage of this exciting and emerging field of engineering.
Distributing power in high speed, high complexity integrated circuits has become a challenging task as power levels exceeding tens of watts have become commonplace while the power supply is plunging toward one volt. This book is dedicated to this important subject. The primary purpose of this monograph is to provide insight and intuition into the behavior and design of power distribution systems for high speed, high complexity integrated circuits.
This book will introduce various power management integrated circuits (IC) design techniques to build future energy-efficient “green” electronics. The goal is to achieve high efficiency, which is essential to meet consumers’ growing need for longer battery lives. The focus is to study topologies amiable for full on-chip implementation (few external components) in the mainstream CMOS technology, which will reduce the physical size and the manufacturing cost of the devices.
This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors’ manuals, and program downloads
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.