Download Free On Chip Memory Architecture Exploration Of Embedded System On Chip Book in PDF and EPUB Free Download. You can read online On Chip Memory Architecture Exploration Of Embedded System On Chip and write the review.

AbstractToday's feature-rich multimedia products require embedded system solution with complexSystem-on-Chip (SoC) to meet market expectations of high performance at low cost andlower energy consumption. SoCs are complex designs with multiple embedded processors,memory subsystems, and application specific peripherals. The memory architecture ofembedded SoCs strongly influences the area, power and performance of the entire system.Further, the memory subsystem constitutes a major part (typically up to 70%) of thesilicon area for the current day SoC.The on-chip memory organization of embedded processors varies widely from oneSoC to another, depending on the application and market segment for which the SoC isdeployed. There is a wide variety of choices available for the embedded designers, startingfrom simple on-chip SPRAM based architecture to more complex cache-SPRAM basedhybrid architecture. The performance of a memory architecture also depends on howthe data variables of the application are placed in the memory. There are multiple datalayouts for each memory architecture that are efficient from a power and performanceviewpoint. Further, the designer would be interested in multiple optimal design pointsto address various market segments. Hence a memory architecture exploration for anembedded system involves evaluating a large design space in the order of 100,000 ofdesign points and each design points having several tens of thousands of data layouts.Due to its large impact on system performance parameters, the memory architecture isoften hand-crafted by experienced designers exploring a very small subset of this designspace. The vast memory design space prohibits any possibility for a manual analysis.In this work, we propose an automated framework for on-chip memory architectureexploration. Our proposed framework integrates memory architecture exploration anddata layout to search the design space efficiently. While the memory exploration selectsspecific memory architectures, the data layout efficiently maps the given application onto the memory architecture under consideration and thus helps in evaluating the memoryarchitecture. The proposed memory exploration framework works at both logical andphysical memory architecture level. Our work addresses on-chip memory architecture forDSP processors that is organized as multiple memory banks, with each back can be asingle/dual port banks and with non-uniform bank sizes. Further, our work also addressmemory architecture exploration for on-chip memory architectures that is SPRAM andcache based. Our proposed method is based on multi-objective Genetic Algorithm basedand outputs several hundred Pareto-optimal design solutions that are interesting from aarea, power and performance viewpoints within a few hours of running on a standarddesktop configuration.
Memory Architecture Exploration for Programmable Embedded Systems addresses efficient exploration of alternative memory architectures, assisted by a "compiler-in-the-loop" that allows effective matching of the target application to the processor-memory architecture. This new approach for memory architecture exploration replaces the traditional black-box view of the memory system and allows for aggressive co-optimization of the programmable processor together with a customized memory system. The book concludes with a set of experiments demonstrating the utility of this exploration approach. The authors perform architecture and compiler exploration for a set of large, real-life benchmarks, uncovering promising memory configurations from different perspectives, such as cost, performance and power.
Memory Issues in Embedded Systems-On-Chip: Optimizations and Explorations is designed for different groups in the embedded systems-on-chip arena. First, it is designed for researchers and graduate students who wish to understand the research issues involved in memory system optimization and exploration for embedded systems-on-chip. Second, it is intended for designers of embedded systems who are migrating from a traditional micro-controllers centered, board-based design methodology to newer design methodologies using IP blocks for processor-core-based embedded systems-on-chip. Also, since Memory Issues in Embedded Systems-on-Chip: Optimization and Explorations illustrates a methodology for optimizing and exploring the memory configuration of embedded systems-on-chip, it is intended for managers and system designers who may be interested in the emerging capabilities of embedded systems-on-chip design methodologies for memory-intensive applications.
SoC design has seen significant advances in the decade and Arm-based silicon has often been at the heart of this revolution. Today, entire systems including processors, memories, sensors and analogue circuitry are all integrated into one single chip (hence "System-on-Chip" or SoC). The aim of this textbook is to expose aspiring and practising SoC designers to the fundamentals and latest developments in SoC design and technologies using examples of Arm(R) Cortex(R)-A technology and related IP blocks and interfaces. The entire SoC design process is discussed in detail, from memory and interconnects through to validation, fabrication and production. A particular highlight of this textbook is the focus on energy efficient SoC design, and the extensive supplementary materials which include a SystemC model of a Zynq chip. This textbook is aimed at final year undergraduate students, master students or engineers in the field looking to update their knowledge. It is assumed that readers will have a pre-existing understanding of RTL, Assembly Language and Operating Systems. For those readers looking for a entry-level introduction to SoC design, we recommend our Fundamentals of System-on-Chip Design on Arm Cortex-M Microcontrollers textbook.
System-on-Chip for Real-Time Applications will be of interest to engineers, both in industry and academia, working in the area of SoC VLSI design and application. It will also be useful to graduate and undergraduate students in electrical and computer engineering and computer science. A selected set of papers from the 2nd International Workshop on Real-Time Applications were used to form the basis of this book. It is organized into the following chapters: -Introduction; -Design Reuse; -Modeling; -Architecture; -Design Techniques; -Memory; -Circuits; -Low Power; -Interconnect and Technology; -MEMS. System-on-Chip for Real-Time Applications contains many signal processing applications and will be of particular interest to those working in that community.
This book describes the various tradeoffs systems designers face when designing embedded memory. Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test. The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.
Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increasingly focused on communication architecture design. On-Chip Communication Architecures is a comprehensive reference on concepts, research and trends in on-chip communication architecture design. It will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on-chip communication architectures. A definitive guide to on-chip communication architectures, explaining key concepts, surveying research efforts and predicting future trends Detailed analysis of all popular standards for on-chip communication architectures Comprehensive survey of all research on communication architectures, covering a wide range of topics relevant to this area, spanning the past several years, and up to date with the most current research efforts Future trends that with have a significant impact on research and design of communication architectures over the next several years
This book gives a comprehensive introduction to the design challenges of MPSoC platforms, focusing on early design space exploration. It defines an iterative methodology to increase the abstraction level so that evaluation of design decisions can be performed earlier in the design process. These techniques enable exploration on the system level before undertaking time- and cost-intensive development.
The Arm(R) Cortex(R)-M processors are already one of the most popular choices for loT and embedded applications. With Arm Flexible Access and DesignStart(TM), accessing Arm Cortex-M processor IP is fast, affordable, and easy. This book introduces all the key topics that system-on-chip (SoC) and FPGA designers need to know when integrating a Cortex-M processor into their design, including bus protocols, bus interconnect, and peripheral designs. Joseph Yiu is a distinguished Arm engineer who began designing SoCs back in 2000 and has been a leader in this field for nearly twenty years. Joseph's book takes an expert look at what SoC designers need to know when incorporating Cortex-M processors into their systems. He discusses the on-chip bus protocol specifications (AMBA, AHB, and APB), used by Arm processors and a wide range of on-chip digital components such as memory interfaces, peripherals, and debug components. Software development and advanced design considerations are also covered. The journey concludes with 'Putting the system together', a designer's eye view of a simple microcontroller-like design based on the Cortex-M3 processor (DesignStart) that uses the components that you will have learned to create.