Download Free On Acoustic Particle And Cell Manipulation In Microfluidic Systems Book in PDF and EPUB Free Download. You can read online On Acoustic Particle And Cell Manipulation In Microfluidic Systems and write the review.

The manipulation of cells and microparticles within microfluidic systems using external forces is valuable for many microscale analytical and bioanalytical applications. Acoustofluidics is the ultrasound-based external forcing of microparticles with microfluidic systems. It has gained much interest because it allows for the simple label-free separation of microparticles based on their mechanical properties without affecting the microparticles themselves. Microscale Acoustofluidics provides an introduction to the field providing the background to the fundamental physics including chapters on governing equations in microfluidics and perturbation theory and ultrasound resonances, acoustic radiation force on small particles, continuum mechanics for ultrasonic particle manipulation, and piezoelectricity and application to the excitation of acoustic fields for ultrasonic particle manipulation. The book also provides information on the design and characterization of ultrasonic particle manipulation devices as well as applications in acoustic trapping and immunoassays. Written by leading experts in the field, the book will appeal to postgraduate students and researchers interested in microfluidics and lab-on-a-chip applications.
Critical to the development of lab-on-a-chip (LOC) devices is the ability to accurately manipulate microparticles and cells within microfluidic volumes. In real fluid samples, the analyte of interest usually coexists in low concentration amongst a myriad of other constituents, resulting in the need for pre-analytical preparation procedures. Consequently, much research attention has been directed towards concentrating and/or isolating the analyte of interest from the other constituents within microfluidic volumes. The central theme of this thesis is the ultrasonic manipulation of particles and cells within microfluidic systems. Acoustically driven mechanisms for particle and cell manipulation are particularly advantageous as these techniques generally exhibit high throughput, have negligible physiological effects on cells, and are highly portable. Comprising both experimental and theoretical investigations, the studies presented herein focus on the selective concentration and isolation of one particle type from another. Both bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices provide physical platforms for the microfluidic manipulation techniques. Specifically, three related studies are included: (1) selective particle concentration and isolation within a droplet, (2) particle and cell clustering at air-liquid interfaces, and (3) selective particle trapping using oscillating bubbles. These studies illustrate the intricate interplay of physics between fluid drag and acoustic forcing on the particles, where parameters such as frequency, particle size and device geometry have been exploited to achieve such results. Furthermore, these findings demonstrate the possibility and benefits of using acoustic actuation methods as a platform for microfluidic LOC devices.
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
Cilia are tiny hairs covering biological cells to generate and sense fluid flow. Millions of years of evolution have inspired a novel technology which is barely a decade old. Artificial cilia have been developed to control and sense fluid flow in microscopic systems, presenting new and interesting options for flow control in lab-on-a-chip devices. This appealing link between nature and technology has seen rapid development in the last few years, and this book presents a review of the state-of-the-art in the form of a professional reference book. The editors have pioneered the field, having initiated a major European project on this topic soon after its inception. Active researchers in academia and industry will benefit from the comprehensive nature of this book, while postgraduates and those new to the field will gain a clear understanding of the theory, techniques and applications of artificial cilia.
Microfluidic platforms are increasingly being used for separating a wide variety of particles based on their physical and chemical properties. In the past two decades, many practical applications have been found in chemical and biological sciences, including single cell analysis, clinical diagnostics, regenerative medicine, nanomaterials synthesis, environmental monitoring, etc. In this Special Issue, we invited contributions to report state-of-the art developments in the fields of micro- and nanofluidic separation, fractionation, sorting, and purification of all classes of particles, including, but not limited to, active devices using electric, magnetic, optical, and acoustic forces; passive devices using geometries and hydrodynamic effects at the micro/nanoscale; confined and open platforms; label-based and label-free technology; and separation of bioparticles (including blood cells), circulating tumor cells, live/dead cells, exosomes, DNA, and non-bioparticles, including polymeric or inorganic micro- and nanoparticles, droplets, bubbles, etc. Practical devices that demonstrate capabilities to solve real-world problems were of particular interest.
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems – Fundamentals and App- cations held in Çe ?me-Izmir, Turkey, August 23–September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist’s weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field.
Lab-on-a-chip microfluidic systems hold substantial promise for a wide range of diagnostic and therapeutic applications. By shrinking down conventional laboratory processes and replicating their functions on-chip, the size, cost, required time, and amount of reagent and sample needed can be drastically reduced. However, because these devices operate at length scales orders of magnitude smaller than conventional fluid processes different physical phenomena become dominant, meaning new forces and techniques must be developed to perform them. Acoustic forces have the potential to be useful at small length scales, though, their use has for the most part been limited by the relatively small force magnitudes and low frequencies at which they have been generated, thereby limiting the promise of rapid acoustic manipulation on microfluidic scales. However, a developing technology relying on the application of surface acoustic waves (SAW) has shown the potential to overcome these limitations, especially due to the high frequencies (10-2000 MHz) and correspondingly small length scales (2-300 μm), on the order of the bacteria and eukaryotic cells, that are characteristic of this method. In this thesis, SAW is used in a range of applications that emphasize these advantages, specifically with respect to the large and localized forces that can be generated on interfaces, both between two immiscible phases and on particles within a single fluid phase. In the studies presented here, SAW is used to (1) actuate a fluid-air interface for the production of water-in-air droplets with tunable diameters in the range of ~0.5-50 μm for the purpose of targeted nebulization therapy, (2) actuate a water-oil interface for the tunable production of picoliter-sized water-in-oil droplets with simultaneous particle pre-concentration and encapsulation for application in digital microfluidic systems, (3) perform controlled concentration and release of particles using a novel microfabricated channel structure and (4) deterministically sort particles over a large size range, demonstrated between 0.3-7 μm with potential application in cell sorting systems where high sorting efficiency or sorting based on only small size differences is required. Finally the case is made that acoustic fields, especially those produced by SAW, are optimal for many, if not most, applications where manipulation of microfluidic species is required.