Download Free On A Generalization Of The Gelfand Transform To Non Commutative Banach Algebras Book in PDF and EPUB Free Download. You can read online On A Generalization Of The Gelfand Transform To Non Commutative Banach Algebras and write the review.

A Gelfand theory for an arbitrary Banach algebra A is a pair (G, A), such that: A is a C*-algebra and G : A -> A is an algebra homomorphism; G induces a bijection between the set of maximal modular left ideals of A and the set of maximal modular left ideals of A; and for every maximal modular left ideal L of A, the map G[subscript L] : A/G[superscript -1](L) -> A/L induced by G has dense range. We prove that if A is a postliminal C*-algebra with Gelfand theory (G, A), then no proper C*-subalgebra of A contains GA. We also show that if J is an ideal of a Banach algebra A such that A/J and J both have Gelfand theories, then A also has a Gelfand theory if we impose some conditions on J and on its Gelfand theory.
Written as a hybrid between a research monograph and a textbook the first half of this book is concerned with basic concepts for the study of Banach algebras that, in a sense, are not too far from being commutative. Essentially, the algebra under consideration either has a sufficiently large center or is subject to a higher order commutator property (an algebra with a so-called polynomial identity or in short: Pl-algebra). In the second half of the book, a number of selected examples are used to demonstrate how this theory can be successfully applied to problems in operator theory and numerical analysis. Distinguished by the consequent use of local principles (non-commutative Gelfand theories), PI-algebras, Mellin techniques and limit operator techniques, each one of the applications presented in chapters 4, 5 and 6 forms a theory that is up to modern standards and interesting in its own right. Written in a way that can be worked through by the reader with fundamental knowledge of analysis, functional analysis and algebra, this book will be accessible to 4th year students of mathematics or physics whilst also being of interest to researchers in the areas of operator theory, numerical analysis, and the general theory of Banach algebras.
Banach algebras are Banach spaces equipped with a continuous multipli- tion. In roughterms,there arethree types ofthem:algebrasofboundedlinear operators on Banach spaces with composition and the operator norm, al- bras consisting of bounded continuous functions on topological spaces with pointwise product and the uniform norm, and algebrasof integrable functions on locally compact groups with convolution as multiplication. These all play a key role in modern analysis. Much of operator theory is best approached from a Banach algebra point of view and many questions in complex analysis (such as approximation by polynomials or rational functions in speci?c - mains) are best understood within the framework of Banach algebras. Also, the study of a locally compact Abelian group is closely related to the study 1 of the group algebra L (G). There exist a rich literature and excellent texts on each single class of Banach algebras, notably on uniform algebras and on operator algebras. This work is intended as a textbook which provides a thorough introduction to the theory of commutative Banach algebras and stresses the applications to commutative harmonic analysis while also touching on uniform algebras. In this sense and purpose the book resembles Larsen’s classical text [75] which shares many themes and has been a valuable resource. However, for advanced graduate students and researchers I have covered several topics which have not been published in books before, including some journal articles.
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Motivated by the importance of the Campbell, Baker, Hausdorff, Dynkin Theorem in many different branches of Mathematics and Physics (Lie group-Lie algebra theory, linear PDEs, Quantum and Statistical Mechanics, Numerical Analysis, Theoretical Physics, Control Theory, sub-Riemannian Geometry), this monograph is intended to: fully enable readers (graduates or specialists, mathematicians, physicists or applied scientists, acquainted with Algebra or not) to understand and apply the statements and numerous corollaries of the main result, provide a wide spectrum of proofs from the modern literature, comparing different techniques and furnishing a unifying point of view and notation, provide a thorough historical background of the results, together with unknown facts about the effective early contributions by Schur, Poincaré, Pascal, Campbell, Baker, Hausdorff and Dynkin, give an outlook on the applications, especially in Differential Geometry (Lie group theory) and Analysis (PDEs of subelliptic type) and quickly enable the reader, through a description of the state-of-art and open problems, to understand the modern literature concerning a theorem which, though having its roots in the beginning of the 20th century, has not ceased to provide new problems and applications. The book assumes some undergraduate-level knowledge of algebra and analysis, but apart from that is self-contained. Part II of the monograph is devoted to the proofs of the algebraic background. The monograph may therefore provide a tool for beginners in Algebra.
"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.
Early in 1952 it became obvious that a new printing would be needed, and new advances in the theory called for extensive revision. It has been completely rewritten, mostly by Phillips, and much has been added while keeping the existing framework. Thus, the algebraic tools play a major role, and are introduced early, leading to a more satisfactory operational calculus and spectral theory. The Laplace-Stieltjes transform methods, used by Hille, have not been replaced but rather supplemented by the new tools. - Foreword.
A discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.