Download Free Omics Technologies For Sustainable Agriculture And Global Food Security Vol Ii Book in PDF and EPUB Free Download. You can read online Omics Technologies For Sustainable Agriculture And Global Food Security Vol Ii and write the review.

This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.
Increasing world population, unpredictable climate and various kind of biotic and abiotic stresses necessitate the sustainable increase in crop production through developing improved cultivars possessing enhanced genetic resilience against all odds. An exploration of these challenges and near possible solution to improve yield is addressed in this book. It comprehensively and coherently reviews the application of various aspect of rapidly growing omics technology including genomics, proteomics, transcriptomics and metabolomics for crop development. It provides detailed examination of how omics can help crop science and introduces the benefits of using these technologies to enhance crop production, resistance and other values. It also provides platform to ponder upon the integrative approach of omics to deal with complex biological problems. The book highlights crop improvement such as yield enhancement, biotic and abiotic resistance, genetic modification, bioremediation, food security etc. It explores how the different omics technology independently and collectively would be used to improve the quantitative and qualitative traits of crop plants. The book is useful for graduate and post-graduate students of life science including researchers who are keen to know about the application of omics technologies in the different area of plant science. This book is also an asset to the modern plant breeders, and agriculture biotechnologist.
Applied Biotechnology Strategies to Combat Plant Abiotic Stress investigates the causal molecular factors underlying the respective mechanisms orchestrated by plants to help alleviate abiotic stress in which Although knowledge of abiotic stresses in crop plants and high throughput tools and biotechnologies is avaiable, in this book, a systematic effort has been made for integrating omics interventions across major sorts of abiotic stresses with special emphasis to major food crops infused with detailed mechanistic understanding, which would furthermore help contribute in dissecting the interdisciplinary areas of omics-driven plant abiotic stress biology in a much better manner. In 32 chapters Applied Biotechnology Strategies to Combat Plant Abiotic Stress focuses on the integration of multi-OMICS biotechnologies in deciphering molecular intricacies of plant abiotic stress namely drought, salt, cold, heat, heavy metals, in major C3 and C4 food crops. Together with this, the book provides updated knowledge of common and unique set of molecular intricacies playing a vital role in coping up severe abiotic stresses in plants deploying multi-OMICS approaches This book is a valuable resource for early researchers, senior academicians, and scientists in the field of biotechnology, biochemistry, molecular biology, researchers in agriculture and, crops for human foods, and all those who wish to broaden their knowledge in the allied field. - Describes biotechnological strategies to combat plant abiotic stress - Covers the latest evidence based multipronged approaches in understanding omics perspective of stress tolerance - Focuses on the integration of multi-OMICS technologies in deciphering molecular intricacies of plant abiotic stress
This book covers latest information on organic and inorganic waste management, and how the waste can be utilized as an energy source. An increasing world population and climate change rate hint that environmental health needs a sustainable waste recycling system worldwide. Management of wastes material plays a substantial role in the environment and climate regulation. Chapters contain modern tools and techniques for managing inorganic, biomedical, municipality, and food waste. The title covers the role of contemporary microbiology and biotechnological tools in waste management and how these microbial agents can enhance waste degradation and bioenergy production. The book covers interesting topics such as bio-ethanol production from agro-waste, microbial fuel cells, biogas production from animal waste, nanotechnology in waste recycling, etc. The primary audiences are researchers, scientists, students, and policymakers interlinked with waste management and applied microbial sectors. ​
This book highlights the recent progress on the applications of mutation breeding technology in crop plants. Plant breeders and agriculturists are faced with the new challenges of climate change, human population growth, and dwindling arable land and water resources which threaten to sustain food production worldwide. Genetic variation is the basis which plant breeders require to produce new and improved cultivars. The understanding of mutation induction and exploring its applications has paved the way for enhancing genetic variability for various plant and agronomic characters, and led to advances in gene discovery for various traits. Induced mutagenesis has played a significant role in crop improvement and currently, the technology has resulted in the development and release of more than 3600 mutant varieties in most of the crop plants with great economic impact. The field of ‘mutation breeding’ has come long way to become an important approach for crop improvement. This book covers various methodologies of mutation induction, screening of mutants, genome editing and genomics advances and mutant gene discovery. The book further discusses success stories in different countries and applications of mutation breeding in food crops, horticultural plants and plantation crops. This informative book is very useful to plant breeders, students and researchers in the field of agriculture, plant sciences, food science and genetics.
Today's planet faces several critical problems such as resource depletion, environmental destruction, and climate change that affect all areas of life as we know it. Figuring out how to address these issues and prioritizing Earth’s health has been at the forefront of study as it is a key issue that affects us all. One element that requires further investigation is algae regarding its potential for creating a more sustainable future across the food, energy, and environmental sectors. The Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment provides insight into the biotechnological and biorefinery aspects of algae together with their unique applications in the agriculture and pharmaceutical industry. Furthermore, this book considers the biological and biotechnological processes happening in the cultivation and harvesting of algae, DNA sequencing, and genomics of algae. Moreover, it examines the bio-remediation aspects of algae and its utilization to produce biofuels, methane, hydrogen, and other useful renewable sources of energy, thereby contributing to environmental sustainability. Covering topics such as cell biology and food science, this reference work is ideal for academicians, researchers, industry professionals, scholars, practitioners, instructors, and students.
Global food security is increasingly challenging in light of population increase, the impact of climate change on crop production, and limited land available for agricultural expansion. Plant breeding and other agricultural technologies have contributed considerably for food and nutritional security over the last few decades. Genetic engineering approaches are powerful tools that we have at our disposal to overcome substantial obstacles in the way of efficiency and productivity of current agricultural practices. Genome engineering via CRISPR/Cas9, Cpf1, base editing and prime editing, and OMICs through genomics, transcriptomics, proteomics, phenomics, an metabolomics have helped to discover underlying mechanisms controlling traits of economic importance. Principle and Practices of OMICs and Genome Editing for Crop Improvement provides recent research from eminent scholars from around the world, from various geographical regions, with established expertise on genome editing and OMICs technologies. This book offers a wide range of information on OMICs techniques and their applications to develop biotic, abiotic and climate resilient crops, metabolomics and next generation sequencing for sustainable crop production, integration bioinformatics, and multi-omics for precision plant breeding. Other topics include application of genome editing technologies for food and nutritional security, speed breeding, hybrid seed production, resource use efficiency, epigenetic modifications, transgene free breeding, database and bioinformatics for genome editing, and regulations adopted by various countries around globe for genome edited crops. Both OMICs and genome editing are vigorously utilized by researchers for crop improvement programs; however, there is limited literature available in a single source. This book provides a valuable resource not only for students at undergraduate and postgraduate level but also for researchers, stakeholders, policy makers, and practitioners interested in the potential of genome editing and OMICs for crop improvement programs.
The steadily increasing presence of both natural and anthropogenic pollutants in our environment poses a considerable challenge, given the recalcitrance of many of these pollutants. Microbial bioremediation presents a promising and sustainable strategy that harnesses a diverse array of microorganisms, operating either concurrently or sequentially, to eliminate or mitigate the presence of pollutants within the environment. Recent years have witnessed the application of multiomics techniques to the study of biodegradation and bioremediation, yielding an abundance of novel data that enrich our comprehension of pivotal pathways and offer fresh perspectives on the adaptability of organisms amidst shifting environmental conditions. This book brings together recent progress in microbial bioremediation, emphasizing the emerging field of multiomics technologies. It serves as a valuable reference for microbiologists exploring multiomics applications and environmental scientists seeking innovative remediation solutions.