Download Free Olefin Upgrading Catalysis By Nitrogen Based Metal Complexes Ii Book in PDF and EPUB Free Download. You can read online Olefin Upgrading Catalysis By Nitrogen Based Metal Complexes Ii and write the review.

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II: State-of-the-art and Perspectives provides a critical review of the state-of-the-art developments in industrially relevant processes connected to efficient and selective olefin upgrading. Specific attention is devoted to catalysts containing imine- and amine-based ligands. All the chapters in this book have been designed to provide a systematic account of the vast amount of information available for this type of catalyst as well as to highlight the factors that ultimately control the catalyst’s performance and productivity. A comprehensive panorama of catalyst precursors is presented, spanning from group 10 α-diimine complexes and iron and cobalt 2,6-bis(imino)pyridine derivatives, to vanadium, chromium, titanium, zirconium and lanthanide complexes supported by nitrogen-containing ligands. The authors of this collective work are currently involved in the development of imine-based catalysts for efficient and selective olefin upgrading and the majority of them have dedicated most of their scientific career to this important field. In writing this book, their major goal is to transfer as many ideas and experiences as possible to the global audience of scientists engaged in this area of research.
This book highlights key advances that have occurred in the field of olefin conversion in recent years. The role of homogenous transition metal catalysts which contain an imine functionality is emphasized; their potential applications in the processing and upgrade of olefins to a wide variety of commodity products of very high industrial value is also explored. On the threshold of the fiftieth anniversary of the Noble Prize to Ziegler and Natta, this book gives a critical summary of the state of the art developments in the fascinating and rapidly developing field of the olefin polymerization, oligomerization, and co-polymerization catalysis.
Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II: State-of-the-art and Perspectives provides a critical review of the state-of-the-art developments in industrially relevant processes connected to efficient and selective olefin upgrading. Specific attention is devoted to catalysts containing imine- and amine-based ligands. All the chapters in this book have been designed to provide a systematic account of the vast amount of information available for this type of catalyst as well as to highlight the factors that ultimately control the catalyst’s performance and productivity. A comprehensive panorama of catalyst precursors is presented, spanning from group 10 α-diimine complexes and iron and cobalt 2,6-bis(imino)pyridine derivatives, to vanadium, chromium, titanium, zirconium and lanthanide complexes supported by nitrogen-containing ligands. The authors of this collective work are currently involved in the development of imine-based catalysts for efficient and selective olefin upgrading and the majority of them have dedicated most of their scientific career to this important field. In writing this book, their major goal is to transfer as many ideas and experiences as possible to the global audience of scientists engaged in this area of research.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
Chemistry and Material Sciences naturally depend greatly on Synthesis as the initial stage for the existence of compounds and materials with desired behaviors, within the overall streamline of Design/Synthesis — Properties — Application/Function, and their relations. Such a general approach is of a too wide scope to be properly treated in a single set of publications, but this one on 'Synthesis and Applications in Chemistry and Materials' restricts itself by aiming to show the strength and international character of the current research in synthetic chemistry that is being developed in Portugal or abroad by teams that cooperate with this country. Hence, it gathers representative contributions of main Portuguese research groups and foreign collaborating ones. Nevertheless, the topic should be understood in a wide sense, being open to types of studies with significance on sustainable synthesis and applications in chemistry, materials and/or related sciences.
The idea of this book is to present the up-to-date research results on Nitrate Esters as explosive materials. It covers many aspects including the material structures, nitrating agent, chemical synthesis devices, preparation technology, and applications etc. In particular, this work sheds light on the comprehensive utilization and thorough destruction of the used Nitrate Easters which is crucial for preventing repeated pollution. This is a highly informative and instructive book providing insight for the researchers working on nitrating theory, energetic materials and chemical equipments.
Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers will gain a deeper understanding of the catalytic transformations, allowing them to adapt the knowledge to their own investigations. With its ideal combination of fundamental and applied research, this is an essential reference for researchers and graduate students both in academic institutions and in the chemical industry. With a foreword by Nobel laureate Roald Hoffmann.
Advances in Organometallic Chemistry, Volume 81 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Specific chapters cover Recent Advances in the Catalytic Applications of NHC-Early Abundant Metals (Fe, Mn, Co) Complexes, A Guide to Non-Carbonyl, Non-Isocyano Organometallic Chemistry of Technetium-99 from Discovery to 2023, and Cyclopentadienyl, Amidinate (CPAM) Complexes of Groups 4 - 6 Transition Metals. - Provides the latest information on cancer research - Offers outstanding and original reviews on a range of cancer research topics - Serves as an indispensable reference for researchers and students alike
This book highlights key advances that have occurred in the field of olefin conversion in recent years. The role of homogenous transition metal catalysts which contain an imine functionality is emphasized; their potential applications in the processing and upgrade of olefins to a wide variety of commodity products of very high industrial value is also explored. On the threshold of the fiftieth anniversary of the Noble Prize to Ziegler and Natta, this book gives a critical summary of the state of the art developments in the fascinating and rapidly developing field of the olefin polymerization, oligomerization, and co-polymerization catalysis.
The first chiral amidinate borohydride rare earth compounds and compounds based on (S)-HPEBA ((S,S)-N,N-bis-(1-phenylethyl)benzamidine) ligand were reported by Roesky et al. To continuing this work, the new chiral ligand (S)-HNEBA ((S,S)-N,N-bis-(1-naphthylethyl)benzamidine) were synthesized. The corresponding amidinate metal complexes were successfully obtained by amine elimination. The luminescent and magnetic properties of rare earth compounds were studied. Alkaline earth metal compounds have been extensively studied as catalysts in synthetic chemistry. However, chiral amidinate alkaline earth metal complexes have never been reported. Chiral amidinate ligand (S)-HPEBA was introduced into the coordination chemistry of the alkaline earth metal as well as divalent lanthanides, their catalytic activities in hydrophosphination have been investigated. The Ba compound showed high catalytic activities in the hydrophosphination reaction. Moreover, since rare earth metal COT complexes exhibit excellent SMM behavior, it is of great interest to study the magnetic behavior of COT amidinate complexes. Thus, amidine ligand (S)-HPEBA and (S)-HPETA are introduced into the corresponding COT amidinate complexes for magnetic properties studies. The Er Compound exhibited typical field-induced SMM behavior. Furthermore, inspired by the promising application of lanthanide SMMs and the research of SMMs based on sandwich type lanthanide complexes, a series of novel sandwich type complexes comprising of Pc and COT ligand were designed and synthesized.