Download Free Oil From Microalgae Book in PDF and EPUB Free Download. You can read online Oil From Microalgae and write the review.

This Brief provides a concise review of the potential use of microalgae for biofuel production. The following topics are highlighted: the advantages of microalgae over conventional biofuel-producing crops; technological processes for energy production using microalgae; microalgal biomass production systems, production rates and costs; algae cultivation strategies and main culture parameters; biomass harvesting technologies and cell disruption; CO2 sequestration; life cycle analysis; and algal biorefinery strategies. The conclusions section discusses the contribution of the technologies described to environmental sustainability and future prospects.
Featuring recognized academic and industrial experts in this cutting-edge field, this book reviews single cell oils (SCO) currently in the market. The text mainly focuses on the production of the long chain polyunsaturated fatty acids, Arachidonic acid, and Docosahexaenoinc acid. All chapters provide up to date references for navigating the vast amount of historic data available in the field. The authors provide real world examples of the commercial development and applications of various SCO in a variety of fields, from food ingredients and disease treatment to aquaculture and fish farming. It covers the essential information in this fast moving field giving details of the production of all the major SCOs, their extraction, purification, applications and safety evaluations. In addition, this new edition includes major coverage of the potential of SCOs for biofuels that may be of key significance in the coming years. - Includes sufficient detail on molecular breeding of yeasts and molds - Shows how microbial oils have gone from being academic curisoisties to being minor commodity oils - Presents details on the safey and nutrition of single cell oils for human and animal nutrition
Lipids and Edible Oils: Properties, Processing and Applications covers the most relevant topics of lipids and edible oils, especially their properties, processing and applications. Over the last years, researchers have investigated lipid bioavailability, authentication, stability and oxidation during processing and storage, hence the development of food and non-food applications of lipids and edible oils has attracted great interest. The book explores lipid oxidation in foods, the application of lipids as nano-carriers of food bioactive compounds, and their bioavailability, metabolism and nutritional genomics. Regarding edible oils, the book thoroughly explores their triacylglycerols content, biodiesel and energy production from vegetable oils, refining and lifecycle assessment. Written by a team of interdisciplinary experts that research lipids and edible oils, the book is intended for food scientists, technologists, engineers and chemists working in the whole food science field. - Thoroughly explores the technological properties of lipids and edible oils - Includes food processing by-products and microalgae as a source of lipids and edible oils - Reviews novelties in edible oil products and processing, including refining techniques, biorefinery and value creation processing waste
Extensive effort is being made globally to develop various biofuels as an inexhaustible and renewable energy source. Biofuels are viewed as promising alternatives to conventional fossil fuels because they have the potential to eliminate major environmental problems such as global warming and climate change created by fossil fuels. Among the still-developing biofuel technologies, biodiesel production from algae offers a good prospect for large-scale practical use, considering the fact that algae are capable of producing much more yield than other biofuels such as corn and soybean crops. Although research on algae-based biofuel is still in its developing stage, extensive work on laboratory- and pilot-scale algae-harvesting systems with promising prospects has been reported. This chapter presents a discussion of the literature review of recent advances in algal biomass harvesting. The chapter focuses on stability and separability of algae and algae-harvesting methods. Challenges and prospects of algae harvesting are also outlined. The review aims to provide useful information for future development of efficient and commercially viable algal biodiesel production.
Microalgae are one of the most studied potential sources of biofuels and bioenergy. This book covers the key steps in the production of renewable biofuels from microalgae - strain selection, culture systems, inorganic carbon utilisation, lipid metabolism and quality, hydrogen production, genetic engineering, biomass harvesting, extraction. Greenhouse gas and techno-economic modelling are reviewed as is the 100 year history of microalgae as sources of biofuels and of commercial-scale microalgae culture. A summary of relevant basic standard methods used in the study of microalgae culture is provided. The book is intended for the expert and those starting work in the field.​
Increased research is going on to explore the new cleaner options for the utilization of natural resources. This book aims to provide the scientific knowhow and orientation in the area of the emerging technologies for utilization of natural resources for sustainable development to the readers. The book includes production of energy and lifesaving drugs using natural resources as well as reduction of wastage of resources like water and energy for sustainable development in both technological as well as modeling aspects.
Handbook of Microalgal Culture is truly a landmarkpublication, drawing on some 50 years of worldwide experience inmicroalgal mass culture. This important book comprisescomprehensive reviews of the current available information onmicroalgal culture, written by 40 contributing authors from aroundthe globe. The book is divided into four parts, with Part I detailingbiological and environmental aspects of microalgae with referenceto microalgal biotechnology and Part II looking in depth at majortheories and techniques of mass cultivation. Part III compriseschapters on the economic applications of microalgae, includingcoverage of industrial production, the use of microalgae in humanand animal nutrition and in aquaculture, in nitrogen fixation,hydrogen and methane production, and in bioremediation of pollutedwater. Finally, Part IV looks at new frontiers and includeschapters on genetic engineering, microalgae as platforms forrecombinant proteins, bioactive chemicals, heterotrophicproduction, microalgae as gene-delivery systems for expressingmosquitocidal toxins and the enhancement of marine productivity forclimate stabilization and food security. Handbook of Microalgal Culture is an essential purchasefor all phycologists and also those researching aquatic systems,aquaculture and plant sciences. There is also much of great use toresearchers and those involved in product formulation withinpharmaceutical, nutrition and food companies. Libraries in alluniversities and research establishments teaching and researchingin chemistry, biological and pharmaceutical sciences, food sciencesand nutrition, and aquaculture will need copies of this book ontheir shelves. Amos Richmond is at the Blaustein Institute for DesertResearch, Ben-Gurion University of the Negev, Israel.
Microalgae: Cultivation, Recovery of Compounds and Applications supports the scientific community, professionals and enterprises that aspire to develop industrial and commercialized applications of microalgae cultivation. Topics covered include conventional and emerging cultivation and harvesting techniques of microalgae, design, transport phenomena models of microalgae growth in photobioreactors, and the catalytic conversion of microalgae. A significant focus of the book illustrates how marine algae can increase sustainability in industries like food, agriculture, biofuel and bioprocessing, among others. This book is a complete reference for food scientists, technologists and engineers working in the bioresource technology field. It will be of particular interest to academics and professionals working in the food industry, food processing, chemical engineering and biotechnology. Explores emerging technologies for the clean recovery of antioxidants from microalgae Includes edible oil and biofuels production, functional food, cosmetics and animal feed applications Discusses microalgae use in sustainable agriculture and wastewater treatment Considers the techno-economic aspects of microalgae processing for biofuel, chemicals, pharmaceuticals and bioplastics
Algae Energy covers the production of algae culture and the usage of algal biomass conversion products. It also reviews modern biomass-based transportation fuels, including biodiesel, bio-oil, biomethane and biohydrogen. Each chapter opens with fundamental explanations suitable for those with a general interest in algae energy and goes on to provide in-depth scientific details for more expert readers. Algae energy is discussed within the wider context of green energy, with chapters covering topics such as: green energy facilities, algae technology, energy from algae and biodiesel from algae. Algae Energy addresses the needs of energy researchers, chemical engineers, fuel and environmental engineers, postgraduate and advanced undergraduate students, and others interested in a practical tool for pursuing their interest in bio-energy.
Hansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including p