Download Free Ohmically Heated High Density Z Pinch Book in PDF and EPUB Free Download. You can read online Ohmically Heated High Density Z Pinch and write the review.

The gross properties of a high-density (n approximately equal to 10$sup 27$ m−3), small-radius, (r = 10−4 m) gas-imbedded Z pinch have been examined considering only classical processes. The rate equation using only ohmic heating along with bremsstrahlung and radial heat transport shows that ohmic heating will rapidly take the pinch to thermonuclear temperatures for currents, I, greater than 1 MA. The radial heat loss for the pinch is very small for I greater than 1.5 MA. This suggests that the pinch could tolerate being driven to a nearby wall by an m = 1 kink. The laser technology for initiation of the small-diameter filament and the high-voltage technology for giving a 30-ns rise to a MA or more are available now. Some reactor considerations have been included. (auth).
The gross properties of a high-density (n approximately equal to 10$sup 27$ m$sup -3$), small-radius, (r = 10$sup -4$ m) gas-imbedded Z pinch have been examined considering only classical processes. The rate equation using only ohmic heating along with bremsstrahlung and radial heat transport shows that ohmic heating will rapidly take the pinch to thermonuclear temperatures for currents, I, greater than 1 MA. The radial heat loss for the pinch is very small for I greater than 1.5 MA. This suggests that the pinch could tolerate being driven to a nearby wall by an m = 1 kink. The laser technology for initiation of the small-diameter filament and the high-voltage technology for giving a 30-ns rise to a MA or more are available now. Some reactor considerations have been included. (auth).
A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results.
The fiber-initiated High-Density Z-Pinch (HDZP) is a novel concept in which fusion plasma could be produced by applying 2 MV along a thin filament of frozen deuterium, 20-30 .mu.m in diameter, 5-10 cm long. The megamp-range currents that result would ohmically heat the fiber to fusion temperatures in 100 ns while maintaining nearly constant radius. The plasma pressure would be held stably by the self-magnetic field for many radial sound transit times during the current-rise phase while, in the case of D-T, a significant fraction of the fiber undergoes thermonuclear fusion. This paper presents results of Los Alamos HDZP studies. Existing and new experiments are described. A succession of theoretical studies, including 1D self-similar and numerical studies of the hot plasma phase, 1D and 2D numerical studies of the cold startup phase, and 3D numerical studies of stability in the hot regime, are then presented. 9 refs., 4 figs.
Experiments in which 250 kA have been passed through a z-pinch column formed from a thin fiber of cryogenic solid deuterium have demonstrated unexpectedly stable behavior. It has been shown that it is possible to maintain a z pinch in near radial equilibrium while it is ohmically heated from 16°K to several hundred eV. These results have motivated an effort to increase the plasma current to 1 MA and above, giving the potential of producing reactor-relevant plasmas capable of significant thermonuclear burn. Such a megamp experiment has been designed, partially fabricated, and successfully tested with an existing generator.
The linear Z pinch is a plasma configuration which in its simplest form requires no auxiliary magnetic field; an axial current carried by the plasma produces an azimuthal confining field and provides ohmic (resistive) or implosion heating. The Lawson criterion (n tau> 102° m−3s) and high temperatures (T> 10 keV) must be simultaneously satisfied in any reactor scheme. Early Z-pinch experiments concentrated on the sub-atmospheric fill pressure regime, with 1019 m−3 n 1023 m−3 and a corresponding confinement time constraint of 101 s tau 10−4 s. In addition, these studies involved plasmas formed at the surface of an insulating wall; the plasmas were subsequently pinched inward by the radial j x B force. Following the implosion phase, gross MHD instabilities were invariably observed on a time scale short compared to the required confinement time.
Annotation Proceedings of a conference held in London, in April 1993. Papers are in nine sections on stability; theory and simulations; x-ray sources and x-ray lasers; plasma focus; implosions; fiber pinches; spectroscopy; x-pinches, vacuum sparks, and other pinches; and a wider view. No index. Annotation c. by Book News, Inc., Portland, Or.
The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.