Download Free Offshore Well Completion And Stimulation Book in PDF and EPUB Free Download. You can read online Offshore Well Completion And Stimulation and write the review.

While the public is generally aware of the use of hydraulic fracturing for unconventional resource development onshore, it is less familiar with the well completion and stimulation technologies used in offshore operations, including hydraulic fracturing, gravel packs, "fracpacks," and acid stimulation. Just as onshore technologies have improved, these well completion and stimulation technologies for offshore hydrocarbon resource development have progressed over many decades. To increase public understanding of these technologies, the National Academies of Sciences, Engineering, and Medicine established a planning committee to organize and convene a workshop on Offshore Well Completion and Stimulation: Using Hydraulic Fracturing and Other Technologies on October 2-3, 2017, in Washington, DC. This workshop examined the unique features about operating in the U.S. offshore environment, including well completion and stimulation technologies, environmental considerations and concerns, and health and safety management. Participants from across government, industry, academia, and nonprofit sectors shared their perspectives on operational and regulatory approaches to mitigating risks to the environment and to humans in the development of offshore resources. This publication summarizes the presentations and discussions from the workshop.
Well Control for Completions and Interventions explores the standards that ensure safe and efficient production flow, well integrity and well control for oil rigs, focusing on the post-Macondo environment where tighter regulations and new standards are in place worldwide. Too many training facilities currently focus only on the drilling side of the well's cycle when teaching well control, hence the need for this informative guide on the topic. This long-awaited manual for engineers and managers involved in the well completion and intervention side of a well's life covers the fundamentals of design, equipment and completion fluids. In addition, the book covers more important and distinguishing components, such as well barriers and integrity envelopes, well kill methods specific to well completion, and other forms of operations that involve completion, like pumping and stimulation (including hydraulic fracturing and shale), coiled tubing, wireline, and subsea intervention. - Provides a training guide focused on well completion and intervention - Includes coverage of subsea and fracturing operations - Presents proper well kill procedures - Allows readers to quickly get up-to-speed on today's regulations post-Macondo for well integrity, barrier management and other critical operation components
Completions are the conduit between hydrocarbon reservoirs and surface facilities. They are a fundamental part of any hydrocarbon field development project. The have to be designed for safely maximising the hydrocarbon recovery from the well and may have to last for many years under ever changing conditions. Issues include: connection with the reservoir rock, avoiding sand production, selecting the correct interval, pumps and other forms of artificial lift, safety and integrity, equipment selection and installation and future well interventions. - Course book based on course well completion design by TRACS International - Unique in its field: Coverage of offshore, subsea, and landbased completions in all of the major hydrocarbon basins of the world - Full colour
Cementing is arguably the most important operation performed on a well. Well cementing technology is an amalgam of many interdependent scientific and engineering disciplines which are essential to achieve the primary goal of well cementing - zonal isolation. This textbook is a comprehensive and up-to-date reference concerning the application of these disciplines to cementing a well.``Well Cementing'' is envisioned as an upper-level university book, as well as a reference for practicing engineers and scientists. The first section of the book illustrates how the quality of the hydraulic seal provided by the cement sheath can affect well performance. The second section concentrates on the design phase of a cementing treatment, and various aspects of cement job execution are covered in the third section. The fourth section addresses cement job evaluation. The text is supported by many tables and figures, an extensive bibliography and an index. There are also chapters devoted to subjects which are currently of particular interest to the industry, including the prevention of annular gas migration, foamed cements, and cementing horizontal wellbores. The chemistry associated with well cementing is presented in detail.Most of the contributors to this volume are employees of Dowell Schlumberger, one of the leading companies in this field.
Once a natural gas or oil well is drilled, and it has been verified that commercially viable, it must be "completed" to allow for the flow of petroleum or natural gas out of the formation and up to the surface. This process includes: casing, pressure and temperature evaluation, and the proper instillation of equipment to ensure an efficient flow out of the well. In recent years, these processes have been greatly enhanced by new technologies. Advanced Well Completion Engineering summarizes and explains these advances while providing expert advice for deploying these new breakthrough engineering systems. The book has two themes: one, the idea of preventing damage, and preventing formation from drilling into an oil formation to putting the well introduction stage; and two, the utilization of nodal system analysis method, which optimizes the pressure distribution from reservoir to well head, and plays the sensitivity analysis to design the tubing diameters first and then the production casing size, so as to achieve whole system optimization. With this book, drilling and production engineers should be able to improve operational efficiency by applying the latest state of the art technology in all facets of well completion during development drilling-completion and work over operations. - One of the only books devoted to the key technologies for all major aspects of advanced well completion activities. - Unique coverage of all aspects of well completion activities based on 25 years in the exploration, production and completion industry. - Matchless in-depth technical advice for achieving operational excellence with advance solutions.
Produced sand causes a lot of problems. From that reasons sand production must be monitored and kept within acceptable limits. Sand control problems in wells result from improper completion techniques or changes in reservoir properties. The idea is to provide support to the formation to prevent movement under stresses resulting from fluid flow from reservoir to well bore. That means that sand control often result with reduced well production. Control of sand production is achieved by: reducing drag forces (the cheapest and most effective method), mechanical sand bridging (screens, gravel packs) and increasing of formation strength (chemical consolidation). For open hole completions or with un-cemented slotted liners/screens sand failure will occur and must be predicted. Main problem is plugging. To combat well failures due to plugging and sand breakthrough Water-Packing or Shunt-Packing are used.
Reservoir Formation Damage, Second edition is a comprehensive treatise of the theory and modeling of common formation damage problems and is an important guide for research and development, laboratory testing for diagnosis and effective treatment, and tailor-fit- design of optimal strategies for mitigation of reservoir formation damage. The new edition includes field case histories and simulated scenarios demonstrating the consequences of formation damage in petroleum reservoirsFaruk Civan, Ph.D., is an Alumni Chair Professor in the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma in Norman. Dr. Civan has received numerous honors and awards, including five distinguished lectureship awards and the 2003 SPE Distinguished Achievement Award for Petroleum Engineering Faculty. - Petroleum engineers and managers get critical material on evaluation, prevention, and remediation of formation damage which can save or cost millions in profits from a mechanistic point of view - State-of-the-Art knowledge and valuable insights into the nature of processes and operational practices causing formation damage - Provides new strategies designed to minimize the impact of and avoid formation damage in petroleum reservoirs with the newest drilling, monitoring, and detection techniques
Oil and gas well completion and stimulation technologies to develop unconventional hydrocarbon resources in the United States have evolved over the past several decades, particularly in relation to the development of shale oil and shale gas. Shale oil and shale gas resources and the technology associated with their production are often termed "unconventional" because the oil and gas trapped inside the shale or other low-permeability rock formation cannot be extracted using conventional technologies. Since about 2005, the application of these technologies to fields in the U.S. have helped produce natural gas and oil in volumes that allowed the country to reduce its crude oil imports by more than 50% and to become a net natural gas exporter. The regional and national economic and energy advances gained through production and use of these resources have been accompanied, however, by rapid expansion of the infrastructure associated with the development of these fields and public concern over the impacts to surface- and groundwater, air, land, and communities where the resources are extracted. The intent of the first day of the workshop of the National Academies of Sciences, Engineering, and Medicine's Roundtable on Unconventional Hydrocarbon Development was to discuss onshore unconventional hydrocarbon development in the context of potential environmental impacts and the ways in which the risks of these kinds of impacts can be managed. Specifically, the workshop sought to examine the lifecycle development of these fields, including decommissioning and reclamation of wells and related surface and pipeline infrastructure, and the approaches from industry practice, scientific research, and regulation that could help to ensure management of the operations in ways that minimize impacts to the environment throughout their active lifetimes and after operations have ceased. This publication summarizes the presentations and discussions from the workshop.