Download Free Offshore Structures Book in PDF and EPUB Free Download. You can read online Offshore Structures and write the review.

Offshore Structures: Design, Construction and Maintenance, Second Edition covers all types of offshore structures and platforms employed worldwide. As the ultimate reference for selecting, operating and maintaining offshore structures, this book provides a roadmap for designing structures which will stand up even in the harshest environments. Subsea pipeline design and installation is also covered in this edition, as is the selection of the proper type of offshore structure, the design procedure for the fixed offshore structure, nonlinear analysis (Push over) as a new technique to design and assess the existing structure, and more. With this book in hand, engineers will have the most up-to-date methods for performing a structural lifecycle analysis, implementing maintenance plans for topsides and jackets and using non-destructive testing. Provides a one-stop guide to offshore structure design and analysis Presents easy-to-understand methods for structural lifecycle analysis Contains expert advice for designing offshore platforms for all types of environments
Unique, cutting-edge material on structural dynamics and natural forces for offshore structures Using the latest advances in theory and practice, Dynamics of Offshore Structures, Second Edition is extensively revised to cover all aspects of the physical forces, structural modeling, and mathematical methods necessary to effectively analyze the dynamic behavior of offshore structures. Both closed-form solutions and the Mathematica(r) software package are used in many of the up-to-date example problems to compute the deterministic and stochastic structural responses for such offshore structures as buoys; moored ships; and fixed-bottom, cable-stayed, and gravity-type platforms. Throughout the book, consideration is given to the many assumptions involved in formulating a structural model and to the natural forces encountered in the offshore environment. These analyses focus on plane motions of elastic structures with linear and nonlinear restraints, as well as motions induced by the forces of currents, winds, earthquakes, and waves, including the latest theories and information on wave mechanics. Topics addressed include multidegree of freedom linear structures, continuous system analysis (including the motion of cables and pipelines), submerged pile design, structural modal damping, fluid-structure-soil interactions, and single degree of freedom structural models that, together with plane wave loading theories, lead to deterministic or time history predictions of structural responses. These analyses are extended to statistical descriptions of both wave loading and structural motion. Dynamics of Offshore Structures, Second Edition is a valuable text for students in civil and mechanical engineering programs and an indispensable resource for structural, geotechnical, and construction engineers working with offshore projects.
The mooring system is a vital component of various floating facilities in the oil, gas, and renewables industries. However, there is a lack of comprehensive technical books dedicated to the subject. Mooring System Engineering for Offshore Structures is the first book delivering in-depth knowledge on all aspects of mooring systems, from design and analysis to installation, operation, maintenance and integrity management. The book gives beginners a solid look at the fundamentals involved during mooring designs with coverage on current standards and codes, mooring analysis and theories behind the analysis techniques. Advanced engineers can stay up-to-date through operation, integrity management, and practical examples provided. This book is recommended for students majoring in naval architecture, marine or ocean engineering, and allied disciplines in civil or mechanical engineering. Engineers and researchers in the offshore industry will benefit from the knowledge presented to understand the various types of mooring systems, their design, analysis, and operations. Understand the various types of mooring systems and the theories behind mooring analysis Gain practical experience and lessons learned from worldwide case studies Combine engineering fundamentals with practical applications to solve today’s offshore challenges
Essentials of Offshore Structures: Framed and Gravity Platforms examines the engineering ideas and offshore drilling platforms for exploration and production. This book offers a clear and acceptable demonstration of both the theory and application of the relevant procedures of structural, fluid, and geotechnical mechanics to offshore structures. It
This book provides all the key information needed to design offshore structures for renewable energy applications successfully. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, focusing on underlying physics while eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Coverage of design codes and numerical tools ensures the usefulness of this resource for all those studying and working in the rapidly expanding field of offshore renewable energy.
Dynamic Analysis of Offshore Structures appraises offshore structures, particularly the major sources of uncertainty in the design process. The book explains the fundamentals of probabilistic processes, the theory or analysis of sea states, and the random-vibration approach to structural response. The text describes the hydrodynamics of water waves, wave forecasting, and the statistical parameters associated with sea-states. The investigator can use Morison's equation to calculate the impact of wave forces acting on slender members such as on lattice-type structures. Or he can employ the diffraction theory to calculate wave forces acting on large-diameter bodies such as concrete gravity-type structures. Other environmental forces he should be concerned with are the effects of currents and winds. The book examines the theory of vibration (including the spectral approach), the theory of vibration on multi-degree-of-freedom structures, matrix analysis of structural response, problems of fatigue, and soil-structure interaction. The book notes the importance of the method of analysis used, with emphasis on the following: dynamic analysis, frequency domain, and linearization of drag. Two types of analysis follow linearization of drag: deterministic analysis (applied in a series of design waves which uses the long-term exceedance diagram for fatigue); or probabilistic analysis (used to study the behavior of the structure during the extreme design storm and its long term behavior for a range of sea states). The book can prove useful for structural, civil, or maritime engineers, as well as for students in one-year courses in offshore structure analysis at the postgraduate or final-year undergraduate level.
This updated translation from the original German edition provides general background information on oceanology and ocean engineering is given, along with descriptions of drilling techniques, offshore structures and hydrocarbon production at sea. The main part of the book is concerned with the hydrostatic and hydrodynamic analysis of marine structures, followed by an evaluation of marine structure reliability. Environmental conditions affecting marine structures, wave statistics, and the application of reliability theory to code development are also discussed. Students and practising engineers who have an interest in the analysis of marine structures will find this book an invaluable reference.
This book provides a thorough understanding of the interaction of waves and currents with offshore structures.
While the existing literature on offshore structures touch on model testing, a comprehensive text discussing the design, construction, instrumentation, testing and analysis of the physical model is lacking. This book fills that vacuum and provides, through its survey of the theoretical and practical aspects of physical modeling, an in-depth coverage of the technology of model testing. Its usefulness runs through the entire field of engineering, reaching far beyond its focus on offshore construction; and its breadth of scope should appeal not only to engineers and naval architects but to scientists interested in structural or hydraulic testing as well.
Compliant Offshore Structures deals with some aspects of the mechanics of compliant offshore structures. Analysis methods for determining the hydrostatic and hydrodynamic behavior, at wave frequencies only, of conventional and novel compliant structure types are described. The contribution of hull configuration for tandem hull vessels and of pneumatic compliances for ship shape and semi-submersible vessels is also emphasized. Comprised of 11 chapters, this book begins with an overview of the various conventional and emerging methods of hydrostatic and hydrodynamic analysis that are available for characterizing compliant marine structures. The response of compliant structures to ocean waves is given emphasis, along with the hydrostatic stability of a compliant vessel. The discussion then turns to the use of analysis methods for a variety of conventional and novel compliant structures such as semi-submersibles, ship forms, tensioned buoyant platforms, crane vessels, and vertical marine risers. However, those compliant structures that are believed to have a future application or, alternatively, are useful in illustrating an interesting performance feature are also considered. Among such structures are those with articulated joints, pneumatic compliances, and tandem hull marine vehicles. This monograph is intended for practicing engineers as well as undergraduate and postgraduate students.