Download Free Ofdm And Mc Cdma Book in PDF and EPUB Free Download. You can read online Ofdm And Mc Cdma and write the review.

Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.
Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. Currently, a technical in-depth book on this subject is unavailable, which has a similar detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink By providing an all-encompassing self-contained treatment this volume will appeal to a wide readership, as it is both an easy-reading textbook and a high-level research monograph.
Frequency spectrum is a limited and valuable resource for wireless communications. A good example can be observed among network operators in Europe for the prices to pay for UMTS-frequency bands. Therefore, the first goal when designing future wireless communication systems (e.g. 4G - fourth generation) has to be the increase in spectral efficiency. The development in digital communications in the past years has enabled efficient modulation and coding techniques for robust and spectral efficient data, speech, audio and video transmission. These are the multi-carrier modulation (e.g. OFDM) and the spread spectrum technique (e.g. DS-CDMA), where OFDM was chosen for broadcast applications (DVB, DAB) as well as for broadband wireless indoor standards (ETSI HIPERLAN-II, IEEE-802.11) and the DS-CDMA was selected in mobile communications (IS-95, third generation mobile radio systems world wide, UMTS/IMT 2000). Since 1993 various combinations of multi-carrier (MC) modulation and the spread spectrum (SS) technique have been introduced and the field of MC-SS communications has become an independent and important research topic with increasing activities. New application fields have been proposed such as high rate cellular mobile, high rate wireless indoor and LMDS. It has been shown that MC-SS offers the high spectral efficiency, robustness and flexibility that is required for the next generation systems. Meanwhile, different alternative hybrid schemes such as OFDM/OFDMA, MC-TDMA, etc. have been deeply analysed and adopted in different international standards (ETSI-BRAN, IEEE-802 & MMAC). Multi-Carrier & Spread-Spectrum: Analysis of Hybrid Air Interfaces draws together all of the above mentioned hybrid schemes therefore providing a greatly needed resource for system engineers, telecommunication designers and researchers in order to enable them to develop, build and deploy several schemes based on MC-transmission for the next generation systems (which will be an integration of broadband multimedia services covering both 4G mobile and fixed wireless systems). * Offers a complete treatment of multi-carrier, spread-spectrum (SS) and time division multiplexing (TDM) techniques * Provides an in-depth insight into hybrid multiple access techniques based on multi-carrier (MC) transmission * Presents numerous hybrid multiple access and air interface architectures including OFDM/CDMA, MC-CDMA, MC-DS-CDMA and MT-CDMA * Covers new techniques such as space-time coding and software radio Telecommunications engineers, hardware & software system designers and researchers as well as students, lecturers and technicians will all find this an invaluable addition to their bookshelf.
The benefits and success of multi-carrier (MC) modulation on one side and the flexibility offered by the spread spectrum (SS) technique on the other side have motivated many researchers to investigate the combination of both techniques since 1993. This combination known as multi-carrier spread spectrum (MC-SS) benefits from the advantages of both systems and offers high flexibility, high spectral efficiency, simple detection strategies, narrow-band interference rejection capability, etc. The basic principle of this combination is straightforward: The spreading is performed as direct sequence spread spectrum (DS-SS) but instead of transmitting the chips over a single carrier, several sub-carriers are employed. The MC modulation and demodulation can easily be realized in the digital domain by performing IFFT and FFT operations. The separation of the users’ signals can be performed in the code domain. MC-SS systems can perform the spreading in frequency direction, which allows for simple signal detection strategies. Since 1993, MC-SS has been deeply studied and new alternative solutions have been proposed. Meanwhile, deep system analysis and comparison with DS-CDMA have been performed that show the superiority of MC-CDMA. The aim of Multi-Carrier Spread-Spectrum is to edit the ensemble of the newest contributions and research results in this new field that have been presented during the 5th International Workshop on Multi-Carrier Spread-Spectrum (MC-SS 2005), held in Oberpfaffenhofen, Germany.
Motivated by the rapid evolution of the consecutive generations of wireless communication systems this volume continues to provide an overview of the majority of single- and multi-carrier QAM techniques. Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding. Divided into four parts: Part I: commences with a historical perspective and classic schemes for the uninitiated Part II: offers a deep discourse on adaptive QAM arrangements that have found their way also into the 3G system's High Speed Data Packet Access (HSDPA) mode Part III: details the advanced intricacies of adaptive versus space-time block- and trellis-coded OFDM and MC-CDMA Part IV: contains previously unpublished new research results. It commences with a theoretical chapter on the capacity of wireless channels. The discussions then continue by contriving sophisticated iterative coded modulation systems, such as TCM, TTCM, BICM, BICM-ID designed for turbo-detected QAM-based space-time coded OFDM and CDMA systems operating over wireless channels In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers.
Multi-carrier technologies have emerged as important instruments in telecommunications. OFDM is in the forefront, with its adoption by the IEEE 802.11 standards committee and the European HYPERLAN standards group. Following OFDM, MC-CDMA is also demonstrating considerable promise when compared to competing technologies. According to the authors, these technologies are just the beginning in the coming multi-carrier revolution. In Multi-Carrier Technologies for Wireless Communication, the authors explain how a common multi-carrier platform is being designed for DS-CDMA, TDMA, OFDM and MC-CDMA systems. Findings are presented which show how this multi-carrier platform enhances network capacity and probability of error performance.Specific results include (1) innovation in multi-carrier technologies that are enabling them to become an integral part of TDMA and DS-CDMA systems; and (2) the design of multi-carrier systems to overcome PAPR problems (in, e.g., OFDM). Multi-Carrier Technologies for Wireless Communication is an important book for engineers who work with DS-CDMA, TDMA, OFDM, or MC-CDMA systems, and are seeking new ways of exploiting the wireless medium based on a "smarter" signal processing.
Detailing the advantages and limitations of multi-carrier communication, this book proposes possible solutions for these limitations. Multi-Carrier Communication Systems with Examples in MATLAB: A New Perspective addresses the two primary drawbacks of orthogonal frequency division multiplexing (OFDM) communication systems: the high sensitivity to c
Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.
Spread spectrum and CDMA are cutting-edge technologies widely used in operational radar, navigation and telecommunication systems and play a pivotal role in the development of the forthcoming generations of systems and networks. This comprehensive resource presents the spread spectrum concept as a product of the advancements in wireless IT, shows how and when the classical problems of signal transmission/processing stimulate the application of spread spectrum, and clarifies the advantages of spread spectrum philosophy. Detailed coverage is provided of the tools and instruments for designing spread spectrum and CDMA signals answering why a designer will prefer one solution over another. The approach adopted is wide-ranging, covering issues that apply to both data transmission and data collection systems such as telecommunications, radar, and navigation. Presents a theory-based analysis complemented by practical examples and real world case studies resulting in a self-sufficient treatment of the subject Contains detailed discussions of new trends in spread spectrum technology such as multi-user reception, multicarrier modulation, OFDM, MIMO and space-time coding Provides advice on designing discrete spread spectrum signals and signal sets for time-frequency measuring, synchronization and multi-user communications Features numerous Matlab-based problems and other exercises to encourage the reader to initiate independent investigations and simulations This valuable text provides timely guidance on the current status and future potential of spread spectrum and CDMA and is an invaluable resource for senior undergraduates and postgraduate students, lecturers and practising engineers and researchers involved in the deployment and development of spread spectrum and CDMA technology. Supported by a Companion website on which instructors and lecturers can find a solutions manual for the problems and Matlab programming, electronic versions of some of the figures and other useful resources such as a list of abbreviations.
OFDM-based Broadband Wireless Networks covers the latest technological advances in digital broadcasting, wireless LAN, and mobile networks to achieve high spectral efficiency, and to meet peak requirements for multimedia traffic. The book emphasizes the OFDM modem, air-interface, medium access-control (MAC), radio link protocols, and radio network planning. An Instructor Support FTP site is available from the Wiley editorial department.