Download Free Ocular Anatomy Of Some Deep Sea Teleosts Book in PDF and EPUB Free Download. You can read online Ocular Anatomy Of Some Deep Sea Teleosts and write the review.

In the compiling of this book, the vast literature dealing with the descriptive morphology, histology and cytology of teleost development has been combed and integrated. The book is divided into 21 chapters, starting with the egg and embryonic development up to hatching. This is followed by a description of ectodermal, mesodermal and entodermal derivatives and the development of various organs. The subject index, species index and the abundant illustrations add extra value to this long awaited book. Developmental Biology of Teleost Fishes will be a valuable tool for scientists and students in the fields of biology, developmental biology, molecular biology and fish biology.
Never so pleased, sir. 'Twas an excellent dance, And for a preface, I never heard a better. Two Noble Kinsmen, Act III, Sc.S This volume is based mostly on the lectures delivered at an Advanced Study Institute (ASI) of the same title held in July 1977. One lecture given is not in the volume and three chapters, although not based on lectures delivered, have been added to better balance the book. A chapter on the ecosensory functions in crustaceans could not be put in due to time contingency. This absence is deeply regretted. The idea to hold an ASI on Sensory Ecology evolved slowly, main ly due to my own research interest in the past and partly to the discussions I had with a number of colleagues, particularly Dr. John Lythgoe of the University of Sussex. The purpose was to interface Sensory Physiology with Ecology so that workers in those fields will develop a greater awareness for each other. Sense organs have of course evolved to keep their possessors.~ware of the environment and changes in it. Thus, normally one could expect that a study of their functions will be undertaken in relation to environmental parameters.
Adaptation to Environment: Essays on the Physiology of Marine Animals contains a series of essays that is intended as a review of the special adaptations of marine organisms to the particular environmental conditions they are likely to encounter in the natural habitat. This book emphasizes developments in physiology of marine animals and on approaches to the study of the adaptations of marine organisms. This compilation also interprets the term "Physiology in its widest sense to include all aspects of the functioning of the organism from the behavior of animals to the mode of function of enzymes. For this reason, structural adaptations have been reviewed in detail only where their functional role is understood and where they constitute a specific adaptation to defined environmental conditions. This publication benefits students and individuals conducting research on the physiology of marine animals.
Research on sensory processing or the way animals see, hear, smell, taste, feel and electrically and magnetically sense their environment has advanced a great deal over the last fifteen years. This book discusses the most important themes that have emerged from recent research and provides a summary of likely future directions. The book starts with two sections on the detection of sensory signals over long and short ranges by aquatic animals, covering the topics of navigation, communication, and finding food and other localized sources. The next section, the co-evolution of signal and sense, deals with how animals decide whether the source is prey, predator or mate by utilizing receptors that have evolved to take full advantage of the acoustical properties of the signal. Organisms living in the deep-sea environment have also received a lot of recent attention, so the next section deals with visual adaptations to limited light environments where sunlight is replaced by bioluminescence and the visual system has undergone changes to optimize light capture and sensitivity. The last section on central co-ordination of sensory systems covers how signals are processed and filtered for use by the animal. This book will be essential reading for all researchers and graduate students interested in sensory systems.
A question often asked of those of us who work in the seemingly esoteric field of fish vision is, why? To some of us the answer seems obvious - how many other visual scientists get to dive in a tropical lagoon in the name of science and then are able to eat their subjects for dinner? However, there are better, or at least scientifically more acceptable, reasons for working on the visual system of fish. First, in terms of numbers, fish are by far the most important of all vertebrate classes, probably accounting for over half (c. 22 000 species) of all recognized vertebrate species (Nelson, 1984). Furthermore, many of these are of commercial importance. Secondly, if one of the research aims is to understand the human visual system, animals such as fish can tell us a great deal, since in many ways their visual systems, and specifically their eyes, are similar to our own. This is fortunate, since there are several techniques, such as intracellular retinal recording, which are vital to our understanding of the visual process, that cannot be performed routinely on primates. The cold blooded fish, on the other hand, is an ideal subject for such studies and much of what we know about, for example, the fundamentals of information processing in the retina is based on work carried out on fish (e. g. Svaetichin, 1953).
Fish form an extremely diverse group of vertebrates. At a conservative estimate at least 40% of the world's vertebrates are fish. On the one hand they are united by their adaptations to an aquatic environment and on the other they show a variety of adaptations to differing environmental conditions - often to extremes of temperature, salinity, oxygen level and water chemistry. They exhibit an array of behavioural and reproductive systems. Interesting in their own right, this suite of adaptive physiologies provides many model systems for both comparative vertebrate and human physiologists. This four volume encyclopedia covers the diversity of fish physiology in over 300 articles and provides entry level information for students and summary overviews for researchers alike. Broadly organised into four themes, articles cover Functional, Thematic, and Phylogenetic Physiology, and Fish Genomics. Functional articles address the traditional aspects of fish physiology that are common to all areas of vertebrate physiology including: Reproduction, Respiration, Neural (Sensory, Central, Effector), Endocrinology, Renal, Cardiovascular, Acid-base Balance, Osmoregulation, Ionoregulation, Digestion, Metabolism, Locomotion, and so on. Thematic Physiology articles are carefully selected and fewer in number. They provide a level of integration that goes beyond the coverage in the Functional Physiology topics and include discussions of Toxicology, Air-breathing, Migrations, Temperature, Endothermy, etc. Phylogenetic Physiology articles bring together information that bridges the physiology of certain groupings of fishes where the knowledge base has a sufficient depth and breadth and include articles on Ancient Fishes, Tunas, Sharks, etc. Genomics articles describe the underlying genetic component of fish physiology and high light their suitability and use as model organisms for the study of disease, stress and physiological adaptations and reactions to external conditions. Winner of a 2011 PROSE Award Honorable Mention for Multivolume Science Reference from the Association of American Publishers The definitive encyclopedia for the field of fish physiology Three volumes which comprehensively cover the entire field in over 300 entries written by experts Detailed coverage of basic functional physiology of fishes, physiological themes in fish biology and comparative physiology amongst taxonomic Groups Describes the genomic bases of fish physiology and biology and the use of fish as model organisms in human physiological research Includes a glossary of terms
Without light there would be no life in the sea. Since the seas were the cradle for the evolution of all life forms, the theme of this book is central to our understanding of the interaction between living organisms and their environments. To express the breadth of research in this area, leading experts in topics as diverse as satellite imagery and molecular biology have contributed to this collection of essays on light and life in the sea, first published in 1990. Intended for all with an interest in the marine environment, this book aims to present the reader with a sampler of the exciting research that is underway and to provide an introduction to its broad compass.
No more than a fish loves water. - Is not this a strange fellow, my lord, that so confidently seems to undertake this business, which he knows is not to be done; damns himself to do, and dares better be damn'd than to dolt? All's Well That Ends Well Act III, Sc. 6 This volume is the direct result of a NATO-Advanced Study Institute of the same title. held at Bishop's University, Lennoxville, Quebec, Canada, August 1974, under the joint sponsor ship of the NATO-Scientific Advisory Committee, National Research Council of Canada and the Universite de Montreal. It is not, however, strictly restricted to the lectures and seminars pre sented at the ASI. Contributions have been included from two workers who found at a fairly late stage that they could not attend and also included are a table giving the visual pigments and an other dealing with the distribution and development of retinomotor responses. I encouraged the authors to prepare speculative reviews highlighting their own research or that of their immediate col leagues and a number of them have done so. Several contributors, notably those who were asked to give lectures of a general nature at the ASI have written reviews of somewhat greater scope. The result is a collection of papers representing a great variety of approaches to the study of vision in fishes.