Download Free Ocean Science At The Dawn Of A New Millennium Book in PDF and EPUB Free Download. You can read online Ocean Science At The Dawn Of A New Millennium and write the review.

Covers topical issues including pollution and exploitation, and considers how we can ensure a sustainable future for the world's oceans.
This textbook provides a comprehensive compilation of conceptual perspectives, methodological approaches and empirical insights of inter- and transdisciplinary sustainability science. Written by an international team of authors from leading sustainability institutions, the textbook covers key perspectives and topics of the scientific discourse on sustainable development. More than two decades after conceptualizing sustainability as societal guiding vision and regulative idea the necessity of concretizing and realizing sustainability in societal praxis is bigger than ever. Sharply improved individual and societal sustainable decision-making and action is necessary for a better future of humankind and the planet. On that account problem- and solution-oriented perspectives and competencies are crucial. The different chapters assemble an encompassing view of essential foundations and specific areas of research and action in sustainability science and practice. The textbook aims at fostering the further establishment of sustainability science in higher education and to enable the next generation of sustainability experts to tackle the challenging and exciting topic of sustainable development.
Building on the foundation set in Volume I—a landmark synthesis of research in the field—Volume II is a comprehensive, state-of-the-art new volume highlighting new and emerging research perspectives. The contributors, all experts in their research areas, represent the international and gender diversity in the science education research community. The volume is organized around six themes: theory and methods of science education research; science learning; culture, gender, and society and science learning; science teaching; curriculum and assessment in science; science teacher education. Each chapter presents an integrative review of the research on the topic it addresses—pulling together the existing research, working to understand the historical trends and patterns in that body of scholarship, describing how the issue is conceptualized within the literature, how methods and theories have shaped the outcomes of the research, and where the strengths, weaknesses, and gaps are in the literature. Providing guidance to science education faculty and graduate students and leading to new insights and directions for future research, the Handbook of Research on Science Education, Volume II is an essential resource for the entire science education community.
"James Altschuld, David Kumar, and their chapter authors have produced an upbeat, provocative, visionary, and useful volume on educational evaluation. Of special utility is its grounding in issues and practices relating to evaluations of science and technology education. The book should appeal and be useful to a wide range of persons involved in evaluations of educational policy, programs, and (less so) science teachers. These persons include science and technology education experts, educational policymakers, officials of the National Science Foundation, school administrators, classroom teachers, evaluation instructors, evaluation methodologists, practicing evaluators, and test developers, among others. Contents reflecting international studies of curriculum, evaluation of distance education, and evaluation of technology utilization in Australian schools, as well as evaluations in America should make the book appealing to an international audience. Moreover, it provides a global perspective for assessing and strengthening educational evaluation in the US." Daniel L. Stufflebeam, Professor of Education and Director of the Evaluation Center, Western Michigan University For contents, contributors and a free preview: www.new-in-education.com
Tropical cyclones are the most impressive and best phenomenon of the tropics, and this book fills a need for a thorough detailed book on the subject, concentrating on the remote sensing results on both initial and mature forms of tropical cyclones. It provides a comprehensive description of the physical, geophysical and meteorological foundations of global tropical cyclogenesis. The author emphasises the physical aspects necessary to judge the possibilities and limitations of monitoring mitigation methods, and includes numerous applications and illustrations from up-to-date airborne and satellite experiments.
Cyclogenesis research is a central issue of meteorology and climatology. This book gives a deep specific view and fundamentally and effectively contributes to the discussion of the problem. It treats cyclogenisis as a stochastic process in a very fundamental way. Since the publication of the first edition of Global Tropical Cyclogenesis in 2001, a number of important scientific results has been obtained using methods and techniques proposed in that first edition. There is therefore a great need for a revised 2nd edition of this book. It is based on scientific findings from the performance of satellite data processing and a series of scientific marine expeditions to the tropics as part of major Russian Science Academy research projects. Professor Eugene A. Sharkov has proposed the main approaches, experimental techniques and theoretical explanations for many scientific findings as well as new methods of satellite processing. He is recognized as a leading scientist in the field of microwave remote sensing of terrestrial surfaces and atmosphere and in nonlinear geophysics (origination and evolution of atmospheric catastrophes) and has published around 100 scientific works on the problems of global tropical cyclogenesis structure and evolution.
The flux, preservation, and accumulation of organic carbon in marine systems are controlled by various mechanisms including primary p- duction of the surface water, supply of terrigenous organic matter from the surrounding continents, biogeochemical processes in the water column and at the seafloor, and sedimentation rate. For the world's oceans, phytoplankton productivity is by far the largest organic carbon 9 source, estimated to be about 30 to 50 Gt (10 tonnes) per year (Berger et al. 1989; Hedges and Keil 1995). By comparison, rivers contribute -1 about 0. 15 to 0. 23 Gt y of particulate organi.