Download Free Ocean Energy Systems Book in PDF and EPUB Free Download. You can read online Ocean Energy Systems and write the review.

This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
Tidal Energy Systems: Design, Optimization and Control provides a comprehensive overview of concepts, technologies, management and the control of tidal energy systems and tidal power plants. It presents the fundamentals of tidal energy, including the structure of tidal currents and turbulence. Technology, principles, components, operation, and a performance assessment of each component are also covered. Other sections consider pre-feasibility analysis methods, plant operation, maintenance and power generation, reliability assessment in terms of failure distribution, constant failure rate and the time dependent failure model. Finally, the most recent research advances and future trends are reviewed. In addition, applicable real-life examples and a case study of India’s tidal energy scenario are included. The book provides ocean energy researchers, practitioners and graduate students with all the information needed to design, deploy, manage and operate tidal energy systems. Senior undergraduate students will also find this to be a useful resource on the fundamentals of tidal energy systems and their components. Presents the fundamentals of tidal energy, including system components, pre-feasibility analysis, and plant management, operations and control Explores concepts of sustainability and a reliability analysis of tidal energy systems, as well as their economic aspects and future trends Covers the assessment of tidal energy systems by optimization technique and game theory
Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems. Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials. Presents the fundamental physics and theory behind ocean energy systems, covering both oceanographic and engineering aspects of ocean energy Explores the most widely adopted conversion technologies, including tidal, wave, offshore wind, ocean thermal and currents
Covering technology, modeling, field experience, installation and grid connection, this text offers a high-level technical overview of ocean renewable energy generation. It examines wave, tidal, current, salinity, and thermal energy generation and includes the novel technology of marine solar arrays.
Ocean Energy Modeling and Simulation with Big Data: Computational Intelligence for System Optimization and Grid Integration offers the fundamental and practical aspects of big data solutions applied to ocean and offshore energy systems. The book explores techniques for assessment of tidal, wave and offshore wind energy systems. It presents the use of data mining software to simulate systems and Hadoop technology to evaluate control systems. The use of Map Reduce algorithms in systems optimization is examined, along with the application of NoSQL in systems management. Actual data collection through web-based applications and social networks is discussed, along with practical applications of recommendations. Introduces computational methods for processing and analyzing data to predict ocean energy system production, assess their efficiency, and ensure their reliable connection to power grids Covers data processing solutions like Hadoop, NoSQL, Map Reduce and Lambda, discussing their applications in ocean energy for system design and optimization Provides practical exercises that demonstrate the concepts explored in each chapter
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.