Download Free Observing The Vhe Gamma Ray Sky With The Magic Telescopes Book in PDF and EPUB Free Download. You can read online Observing The Vhe Gamma Ray Sky With The Magic Telescopes and write the review.

This book reports on the extraordinary observation of TeV gamma rays from the Crab Pulsar, the most energetic light ever detected from this type of object. It presents detailed information on the painstaking analysis of the unprecedentedly large dataset from the MAGIC telescopes, and comprehensively discusses the implications of pulsed TeV gamma rays for state-of-the-art pulsar emission models. Using these results, the book subsequently explores new testing methodologies for Lorentz Invariance Violation, in terms of a wavelength-dependent speed of light. The book also covers an updated search for Very-High-Energy (VHE), >100 GeV, emissions from millisecond pulsars using the Large Area Telescope on board the Fermi satellite, as well as a study on the promising Pulsar Wind Nebula candidate PSR J0631. The observation of VHE gamma rays is essential to studying the non-thermal sources of radiation in our Universe. Rotating neutron stars, also known as pulsars, are an extreme source class known to emit VHE gamma rays. However, to date only two pulsars have been detected with emissions above 100 GeV, and our understanding of their emission mechanism is still lacking.
This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.
This book introduces the reader to the field of nuclear astrophysics, i.e. the acquisition and reading of measurements on unstable isotopes in different parts of the universe. The authors explain the role of radioactivities in astrophysics, discuss specific sources of cosmic isotopes and in which special regions they can be observed. More specifically, the authors address stars of different types, stellar explosions which terminate stellar evolutions, and other explosions triggered by mass transfers and instabilities in binary stars. They also address nuclear reactions and transport processes in interstellar space, in the contexts of cosmic rays and of chemical evolution. A special chapter is dedicated to the solar system which even provides material samples. The book also contains a description of key tools which astrophysicists employ in those particular studies and a glossary of key terms in astronomy with radioactivities.
High energy gamma-ray photons are the prime probes of the relativistic or high-energy universe, populated by black holes, neutron stars, supernovae, quasars, and matter-antimatter annihilations. Through studying the gamma-ray sky, astrophysicists are able to better understand the formation and behavior of these exotic and energetic bodies. V
This thesis is a comprehensive work that addresses many of the open questions currently being discusssed in the very-high-energy (VHE) gamma-ray community. It presents a detailed description of the MAGIC telescope together with a glimpse of the future Cherenkov Telescope Array (CTA). One section is devoted to the design, development and characterization of trigger systems for current and future imaging atmospheric Cherenkov telescopes. The book also features a state-of-the-art description of pulsar wind nebula (PWN) systems, the study of the multi-TeV spectrum of the Crab nebula, as well as the discovery of VHE gamma rays at the multiwavelength PWN 3C 58, which were sought at these wavelengths for more than twenty years. It also includes the contextualization of this discovery amongst the current population of VHE gamma-ray PWNe. Cataclysmic variable stars represent a new source of gamma ray energies, and are also addressed here. In closing, the thesis reports on the systematic search for VHE gamma-ray emissions of AE Aquarii in a multiwavelength context and the search for VHE gamma-ray variability of novae during outbursts at different wavelengths.
The Energetic Gamma-Ray Experiment Telescope (EGRET) instru ment on the Compton Gamma-Ray Observatory left as a legacy its Third Catalog of High Energy Gamma-Ray Sources, whose detections include a large number of blazars, some pulsars, the Large Magellanic Cloud and a solar flare. Most of the newly discovered objects - a majority of the catalog -are unidentified sources, with a clearly predominant Galactic population. Are all these radio-quiet pulsars, like Geminga, or is there a novel type of celestial object, awaiting identification? In spite of the limited angular resolution provided by EGRET and COMPTEL, there is still much to learn about unidentified ,-ray sources: correlation studies, multiwavelength observations and theoretical work can provide valuable clues, specially if these efforts are carried out in a coordinated manner. The aim of this workshop, held from October 9 to 11, 2000, at the Instituto N acional de Astrofisica, Optica y Electronica, at Tonantzintla, Mexico, was to gather experts on the subject, including observational as tronomers specialized in other regions of the electromagnetic spectrum, in an effort to address the question of the Nature of Galactic high-energy gamma-ray sources, both from the theoretical and observational perspec tive, and elaborate schemes for future identification studies which can make use of existing and forthcoming facilities.
Gamma ray astronomy, the branch of high energy astrophysics that studies the sky in energetic ?-ray photons, is destined to play a crucial role in the exploration of nonthermal phenomena in the Universe in their most extreme and violent forms. The great potential of this discipline offers impressive coverage of many OC hot topicsOCO of modern astrophysics and cosmology, such as the origin of galactic and extragalactic cosmic rays, particle acceleration and radiation processes under extreme astrophysical conditions, and the search for dark matter."
This book provides a theoretical and observational overview of the state of the art of gamma-ray astrophysics, and their impact and connection with the physics of cosmic rays and neutrinos. With the aim of shedding new and fresh light on the problem of the nature of the gamma-ray sources, particularly those yet unidentified, this book summarizes contributions to a workshop that continues today.