Download Free Observing And Modeling Earths Energy Flows Book in PDF and EPUB Free Download. You can read online Observing And Modeling Earths Energy Flows and write the review.

This book provides a comprehensive presentation of Earth’s energy flows and their consequences for the climate. The Earth’s climate as well as planetary climates in general, are broadly controlled by three fundamental parameters: the solar irradiance, the planetary albedo and the planetary emissivity. Space measurements indicate that these three quantities are remarkably stable. A minor decrease in planetary emissivity is consistent with theoretical calculations. This is due to the ongoing increase of atmospheric greenhouse gases making the atmosphere more opaque to long wave terrestrial radiation. As a consequence radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the incoming amount of heat from the sun. Present space-based systems cannot yet satisfactorily measure this imbalance, but the effect can be inferred from the measurements of the increase of heat in the oceans. Minor amounts of heat are also used to melt ice and to warm the atmosphere and the surface of the Earth. The book brings to fore the complexity of feedback processes of the Earth’s climate system and in particular the way clouds and aerosols affect the energy balance both directly and indirectly through feed-back loops driven by the dynamics of atmospheric, ocean and land surface processes. The book highlights recent scientific progress as well as remaining challenges. Previously published in Surveys in Geophysics, Volume 33, Nos. 3-4, 2012
This book provides a comprehensive presentation of Earth’s energy flows and their consequences for the climate. The Earth’s climate as well as planetary climates in general, are broadly controlled by three fundamental parameters: the solar irradiance, the planetary albedo and the planetary emissivity. Space measurements indicate that these three quantities are remarkably stable. A minor decrease in planetary emissivity is consistent with theoretical calculations. This is due to the ongoing increase of atmospheric greenhouse gases making the atmosphere more opaque to long wave terrestrial radiation. As a consequence radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the incoming amount of heat from the sun. Present space-based systems cannot yet satisfactorily measure this imbalance, but the effect can be inferred from the measurements of the increase of heat in the oceans. Minor amounts of heat are also used to melt ice and to warm the atmosphere and the surface of the Earth. The book brings to fore the complexity of feedback processes of the Earth’s climate system and in particular the way clouds and aerosols affect the energy balance both directly and indirectly through feed-back loops driven by the dynamics of atmospheric, ocean and land surface processes. The book highlights recent scientific progress as well as remaining challenges. Previously published in Surveys in Geophysics, Volume 33, Nos. 3-4, 2012
Issues in Biophysics and Geophysics Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Geophysics. The editors have built Issues in Biophysics and Geophysics Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Geophysics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Biophysics and Geophysics Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention.
Elegant, novel explanation of climate change, emphasizing physical understanding and concepts, while avoiding complex mathematics, supported by excellent color illustrations.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.