Download Free Observations Of Milkyway Dwarf Spheroidal Galaxies With The Fermi Lat Detector And Book in PDF and EPUB Free Download. You can read online Observations Of Milkyway Dwarf Spheroidal Galaxies With The Fermi Lat Detector And and write the review.

The conference was aimed at promoting contacts between scientists involved in solar-terrestrial physics, space physics, astroparticle physics and cosmology both from the theoretical and the experimental approach. The conference was devoted to physics and physics requirements, survey of theoretical models and performances of detectors employed (or to be employed) in experiments for fundamental physics, astroparticle physics, astrophysics research and space environment - including Earth magnetosphere and heliosphere and solar-terrestrial physics. Furthermore, cosmic rays have been used to extent the scientific research experience to teachers and students with air shower arrays and other techniques. Presentations included the following subjects: advances in physics from present and next generation ground and space experiments, dark matter, double-beta decay, high-energy astrophysics, space environment, trapped particles, propagation of cosmic rays in the Earth atmosphere, Heliosphere, Galaxy and broader impact activities in cosmic rays science. The open and flexible format of the Conference was conducive to fruitful exchanges of points of view among participants and permitted the evaluation of the progresses made and indicated future research directions. The participants were experienced researchers but also graduate students (MSc and PhD) and recent postdoctoral fellows.
An important, open research topic today is to understand the relevance that dark matter halo substructure may have for dark matter searches. In the standard cosmological model, halo substructure or subhalos are predicted to be largely abundant inside larger halos, for example, galaxies such as ours, and are thought to form first and later merge to form larger structures. Dwarf satellite galaxies—the most massive exponents of halo substructure in our own galaxy—are already known to be excellent targets for dark matter searches, and indeed, they are constantly scrutinized by current gamma-ray experiments in the search for dark matter signals. Lighter subhalos not massive enough to have a visible counterpart of stars and gas may be good targets as well, given their typical abundances and distances. In addition, the clumpy distribution of subhalos residing in larger halos may boost the dark matter signals considerably. In an era in which gamma-ray experiments possess, for the first time, the exciting potential to put to test the preferred dark matter particle theories, a profound knowledge of dark matter astrophysical targets and scenarios is mandatory should we aim for accurate predictions of dark matter-induced fluxes for investing significant telescope observing time on selected targets and for deriving robust conclusions from our dark matter search efforts. In this regard, a precise characterization of the statistical and structural properties of subhalos becomes critical. In this Special Issue, we aim to summarize where we stand today on our knowledge of the different aspects of the dark matter halo substructure; to identify what are the remaining big questions, and how we could address these; and, by doing so, to find new avenues for research.
The work presented in this book is a major step towards understanding and eventually suppressing background in the direct search for dark matter particles scattering off germanium detectors. Although the flux of cosmic muons is reduced by many orders of magnitude in underground laboratories, the remaining energetic muons induce neutrons through various processes, neutrons that can potentially mimic a dark matter signal. This thesis describes the measurement of muon-induced neutrons over more than 3 years in the Modane underground laboratory. The data are complemented by a thorough modeling of the neutron signal using the GEANT4 simulation package, demonstrating the appropriateness of this tool to model these rare processes. As a result, a precise neutron production yield can be presented. Thus, future underground experiments will be able to reliably model the expected rate of muon-induced neutrons, making it possible to develop the necessary shielding concept to suppress this background component.
This thesis covers several theoretical aspects of WIMP (weakly interacting massive particles) dark matter searches, with a particular emphasis on colliders. It mainly focuses on the use of effective field theories as a tool for Large Hadron Collider (LHC) searches, discussing in detail the issue of their validity, and on simplified dark matter models, which are receiving a growing attention from the physics community. It highlights the theoretical consistency of simplified models, which is essential in order to correctly exploit their potential and for them to be a common reference when comparing results from different experiments. This thesis is of interest to researchers (both theorists and experimentalists) in the field of dark matter searches, and offers a comprehensive introduction to dark matter and to WIMP searches for students and non-experts.
Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologists.
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed “Full Likelihood”, that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.
These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field. Topics covered at the symposium: •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search
This book, designed as a tool for young researchers and graduate students, reviews the main open problems and research lines in various fields of astroparticle physics: cosmic rays, gamma rays, neutrinos, cosmology, and gravitational physics. The opening section discusses cosmic rays of both galactic and extragalactic origin, examining experimental results, theoretical models, and possible future developments. The basics of gamma-ray astronomy are then described, including the detection methods and techniques. Galactic and extragalactic aspects of the field are addressed in the light of recent discoveries with space-borne and ground-based detectors. The review of neutrinos outlines the status of the investigations of neutrino radiation and brings together relevant formulae, estimations, and background information. Three complementary issues in cosmology are examined: observable predictions of inflation in the early universe, effects of dark energy/modified gravity in the large-scale structure of the universe, and neutrinos in cosmology and large-scale structures. The closing section on gravitational physics reviews issues relating to quantum gravity, atomic precision tests, space-based experiments, the strong field regime, gravitational waves, multi-messengers, and alternative theories of gravity.
This book Advances in Modern and Applied Science materializes our long-cherished dream of publishing a series of volumes consisting of review papers on contemporary research fields from a broad spectrum of basic sciences. The present volume, which is our first baby-step towards that fulfilment, includes a collection of twenty-five review articles contributed by about fifty researchers and scientists whose vocations are in diverse fields of science including astrophysics, astronomy, high energy physics, space science, atmospheric sciences, computer sciences to material sciences.