Download Free Observational Assessments Of Glacier Mass Changes At Regional And Global Level Book in PDF and EPUB Free Download. You can read online Observational Assessments Of Glacier Mass Changes At Regional And Global Level and write the review.

The report also provides a comprehensive assessment of past and future sea level change in a dedicated chapter.
This Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) will again form the standard scientific reference for all those concerned with climate change and its consequences, including students and researchers in environmental science, meteorology, climatology, biology, ecology and atmospheric chemistry. It provides invaluable material for decision makers and stakeholders at international, national and local level, in government, businesses, and NGOs. This volume provides: • An authoritative and unbiased overview of the physical science basis of climate change • A more extensive assessment of changes observed throughout the climate system than ever before • New dedicated chapters on sea-level change, biogeochemical cycles, clouds and aerosols, and regional climate phenomena • Extensive coverage of model projections, both near-term and long-term climate projections • A detailed assessment of climate change observations, modelling, and attribution for every continent • A new comprehensive atlas of global and regional climate projections for 35 regions of the world
This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the equivalent of 25 mm water for each column of air. Yet atmospheric water vapor is crucial for the Earth’s energy balance. The book gives an up to date presentation of the present knowledge. Previously published in Surveys in Geophysics, Volume 35, No. 3, 2014
The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive assessment of the physical science basis of climate change. It considers in situ and remote observations; paleoclimate information; understanding of climate drivers and physical, chemical, and biological processes and feedbacks; global and regional climate modelling; advances in methods of analyses; and insights from climate services. It assesses the current state of the climate; human influence on climate in all regions; future climate change including sea level rise; global warming effects including extremes; climate information for risk assessment and regional adaptation; limiting climate change by reaching net zero carbon dioxide emissions and reducing other greenhouse gas emissions; and benefits for air quality. The report serves policymakers, decision makers, stakeholders, and all interested parties with the latest policy-relevant information on climate change. Available as Open Access on Cambridge Core.
An international team of over 150 experts provide up-to-date satellite imaging and quantitative analysis of the state and dynamics of the glaciers around the world, and they provide an in-depth review of analysis methodologies. Includes an e-published supplement. Global Land Ice Measurements from Space - Satellite Multispectral Imaging of Glaciers (GLIMS book for short) is the leading state-of-the-art technical and interpretive presentation of satellite image data and analysis of the changing state of the world's glaciers. The book is the most definitive, comprehensive product of a global glacier remote sensing consortium, Global Land Ice Measurements from Space (GLIMS, http://www.glims.org). With 33 chapters and a companion e-supplement, the world's foremost experts in satellite image analysis of glaciers analyze the current state and recent and possible future changes of glaciers across the globe and interpret these findings for policy planners. Climate change is with us for some time to come, and its impacts are being felt by the world's population. The GLIMS Book, to be released about the same time as the IPCC's 5th Assessment report on global climate warming, buttresses and adds rich details and authority to the global change community's understanding of climate change impacts on the cryosphere. This will be a definitive and technically complete reference for experts and students examining the responses of glaciers to climate change. World experts demonstrate that glaciers are changing in response to the ongoing climatic upheaval in addition to other factors that pertain to the circumstances of individual glaciers. The global mosaic of glacier changes is documented by quantitative analyses and are placed into a perspective of causative factors. Starting with a Foreword, Preface, and Introduction, the GLIMS book gives the rationale for and history of glacier monitoring and satellite data analysis. It includes a comprehensive set of six "how-to" methodology chapters, twenty-five chapters detailing regional glacier state and dynamical changes, and an in-depth summary and interpretation chapter placing the observed glacier changes into a global context of the coupled atmosphere-land-ocean system. An accompanying e-supplement will include oversize imagery and other other highly visual renderings of scientific data.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
This book gives an overview of the state of research in fields pertaining to the detection, understanding and prediction of global change impacts in mountain regions. More than sixty contributions from paleoclimatology, cryospheric research, hydrology, ecology, and development studies are compiled in this volume, each with an outlook on future research directions. The book will interest meteorologists, geologists, botanists and climatologists.
Global Change and Future Earth is derived from the work of several programs of the International Union of Geodesy and Geophysics (IUGG). It demonstrates how multi- and inter-disciplinary research outputs from the geoscience community can be applied to tackle the physical and societal impacts of climate change and contribute to the Future Earth programme of the International Council for Science. The volume brings together an international team of eminent researchers to provide authoritative reviews on the wide-ranging ramifications of climate change spanning eight key themes: planetary issues; geodetic issues; the Earth's fluid environment; regions of the Earth; urban environments; food security; and risk, safety and security; and climate change and global change. Covering the challenges faced by urban and rural areas, and in both developed and developing counties, this volume provides an important resource for a global audience of graduate students and researchers from a broad range of disciplines, as well as policy advisors and practitioners.
Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Niño, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.