Download Free Nutrition And Resistance To Climatic Stress Book in PDF and EPUB Free Download. You can read online Nutrition And Resistance To Climatic Stress and write the review.

Climate Change and Crop Stress: Molecules to Ecosystems expounds on the transitional period where science has progressed to 'post-genomics' and the gene editing era, putting field performance of crops to the forefront and challenging the production of practical applicability vs. theoretical possibility. Researchers have concentrated efforts on the effects of environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection which can have a devastating impact on plant growth and yield. Designed to deliver information to combat stress both in isolation and through simultaneous crop stresses, this edited compilation provides a comprehensive view on the challenges and impacts of simultaneous stresses. Presents a multidisciplinary view of crop stresses, empowering readers to quickly align their individual experience and perspective with the broader context Combines the mechanistic aspects of stresses with the strategic aspects Presents both abiotic and biotic stresses in a single volume
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
Abiotic Stress and Legumes: Tolerance and Management is the first book to focus on the ability of legume plants to adapt effectively to environmental challenges. Using the -omic approach, this book takes a targeted approach to understanding the methods and means of ensuring survival and maximizing the productivity of the legume plant by improving tolerance to environmental /abiotic stress factors including drought, temperature change, and other challenges. The book presents a comprehensive overview of the progress that has been made in identifying means of managing abiotic stress effects, specifically in legumes, including the development of several varieties which exhibit tolerance through high yield using transcriptomic, proteomic, metabolomic and ionomic approaches. Further, exogenous application of various stimulants such as plant hormones, nutrients, sugars, and polyamines has emerged as an alternative strategy to improve productivity under these environmental challenges. Abiotic Stress and Legumes: Tolerance and Management examines these emerging strategies and serves as an important resource for researchers, academicians and scientists, enhancing their knowledge and aiding further research. - Explores the progress made in managing abiotic stress, specifically with high yield legumes - Highlights the molecular mechanisms related to acclimation - Presents proven strategies and emerging approaches to guide additional research
Breeding for Stress Resistance and Climate Change is a guide dedicated to understanding how plants can adapt to the challenges posed by climate change. This book is a valuable resource for anyone interested in improving crop resilience, whether they are researchers, breeders, or students. We introduce the book's main goal: to explore the methods and concepts crucial for developing crops that can withstand both living (biotic) and non-living (abiotic) stresses. We emphasize the significance of plant breeding in ensuring a sustainable food supply amidst changing environmental conditions. We highlighted the importance of interdisciplinary collaboration in plant breeding, drawing on insights from genetics, molecular biology, and agronomy. We aim to provide practical knowledge and methodologies that can be applied to breed stress-resistant crops effectively. Breeding for Stress Resistance and Climate Change seeks to empower readers to contribute to the development of sustainable agricultural systems resilient to the impacts of climate change. We hope that this book will inspire and guide individuals to address the pressing challenges facing global agriculture.
Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.
This book discusses many aspects of plant-nutrient-induced abiotic stress tolerance. It consists of 22 informative chapters on the basic role of plant nutrients and the latest research advances in the field of plant nutrients in abiotic stress tolerance as well as their practical applications. Today, plant nutrients are not only considered as food for plants, but also as regulators of numerous physiological processes including stress tolerance. They also interact with a number of biological molecules and signaling cascades. Although research work and review articles on the role of plant nutrients in abiotic stress tolerance have been published in a range of journals, annual reviews and book chapters, to date there has been no comprehensive book on this topic. As such, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, molecular biologists and environmental scientists.