Download Free Nutrients Recycling In Hydroponics Opportunities And Challenges Toward Sustainable Crop Production Under Controlled Environment Agriculture Book in PDF and EPUB Free Download. You can read online Nutrients Recycling In Hydroponics Opportunities And Challenges Toward Sustainable Crop Production Under Controlled Environment Agriculture and write the review.

Enables readers to strengthen existing agricultural strategies to sustainably solve contemporary problems like food supply chain gaps and food scarcity Agroecological Approaches for Sustainable Soil Management explains strategies to check the deterioration of soil quality, irrigation water quality, reuse of wastewaters in agriculture after treatment, organic fertigation, and corporate fertigation, to transform current agriculture into sustainable agriculture, and demonstrates cost effective technologies for sustainable development of site-specific ecosystems. Techniques to eradicate malnutrition, such as enhanced biofortification, are also covered. Sample topics covered in Agroecological Approaches for Sustainable Soil Management include: Foremost developments in the restoration and utilization of degraded lands through organic farming, precision agriculture, climate-resilient fodder/forage cultivation, and livestock management Promotion of agro-forestry-based apiculture, silviculture, and sericulture, and corporate fertigation, and reclaiming urban brownfields & industrial areas Development of diverse products, including biofuel, fiber, fodder, timber, and herbal products leading to the generation of social capitals Ecology of intercropping systems, tree-cover dynamics of grazing lands, and cover crops for soil management Agroecological Approaches for Sustainable Soil Management is a comprehensive and authoritative resource on the subject, making it a must-have resource for scientists working in agrobiodiversity, agroecology, bioscience, restoration ecology, soil science, and sustainable science, along with postgraduate students in ecology, environmental sciences, and environmental economics.
Hydroponics-A standard methodology for plant biological researches provides useful information on the requirements and techniques needs to be considered in order to grow crops successfully in hydroponics. The main focuses of this book are preparation of hydroponic nutrient solution, use of this technique for studying biological aspects and environmental controls, and production of vegetables and ornamentals hydroponically. The first chapter of this book takes a general description of nutrient solution used for hydroponics followed by an outline of in vitro hydroponic culture system for vegetables. Detailed descriptions on use of hydroponics in the context of scientific research into plants responses and tolerance to abiotic stresses and on the problems associated with the reuse of culture solution and means to overcome it are included. Some chapters provides information on the role of hydroponic technique in studying plant-microbe-environment interaction and in various aspects of plant biological research, and also understanding of root uptake of nutrients and thereof role of hydroponics in environmental clean-up of toxic and polluting agents. The last two chapters outlined the hydroponic production of cactus and fruit tree seedlings. Leading research works from around the world are brought together in this book to produce a valuable source of reference for teachers, researcher, and advanced students of biological science and crop production.
This open access book, written by world experts in aquaponics and related technologies, provides the authoritative and comprehensive overview of the key aquaculture and hydroponic and other integrated systems, socio-economic and environmental aspects. Aquaponic systems, which combine aquaculture and vegetable food production offer alternative technology solutions for a world that is increasingly under stress through population growth, urbanisation, water shortages, land and soil degradation, environmental pollution, world hunger and climate change.
Africa can achieve self sufficiency in food production through adoption of innovations in the agriculture sector. Numerous soil fertility and crop production technologies have been generated through research, however, wide adoption has been low. African farmers need better technologies, more sustainable practices, and fertilizers to improve and sustain their crop productivity and to prevent further degradation of agricultural lands. The agricultural sector also needs to be supported by functional institutions and policies that will be able to respond to emerging challenges of globalization and climate change.
Adequate and balanced crop nutrition – with nitrogen (N), phosphorus (P), and potassium (K) – is vital for sustainable crop production. Inadequate and imbalanced crop nutrition contributes to the crop yield gaps – a difference in actual and potential crop yield. Yield gap is one of the many causes of insufficient food production, thus aggravating hunger and malnourishment across the globe. On the other hand, an oversupply of nutrients is highly unsustainable, in terms of both resource conservation and global environmental health. A decreasing excreta recycling in crop production is one of the many reasons for nutrient imbalances in agriculture. Previous studies show that increasing agricultural specialization leads to spatial separation of crop and animal production. Increasing distance between excreta production and crop needs is one of the leading factors that cause reduced excreta recycling. Studies focusing on excreta recycling show that a substantial barrier to a more efficient excreta nutrient reuse is the expensive transportation of bulky volumes of excreta over long distances. In order to overcome that barrier, more detailed spatial estimates of distances between excreta production and crop nutrient needs, and the associated costs for complete excreta transport in an entire country are needed. Hence, the overall aim of this thesis was to quantify the amount of nutrients in the excreta resources compared to the crop nutrient needs at multiple scales (global, national, subnational, and local), and to analyze the need for excreta transports, total distances and costs, to meet the crop nutrient needs in a country. On the global scale, annual (2000-2016) excreta supply (livestock and human) could provide at least 48% of N, 57% of P, and 81% of K crop needs. Although excreta supply was not enough to cover the annual crop nutrient needs at the global scale, at least 29 countries for N, 41 for P, and 71 for K had an excreta nutrient surplus. When including the annual use of synthetic fertilizers, at least 42 additional countries had a N surplus, with the equivalent figures for P being 17 countries, whereas 8 additional countries attained a K surplus. At the same time, when accounting for the use of synthetic fertilizers, each year, at least 57 countries had an N deficit, 70 a P deficit, and 51 countries a K deficit, in total equivalent to 14% of global N and 16% of each P and K crop needs. The total surplus in other countries during the period was always higher than the deficit in the countries with net nutrient deficits, except for P for some years. Unfortunately, both the deficits of the deficit countries and surpluses of the surplus countries were increasing substantially during the 17 years. Such global divergence in nutrient deficits and surpluses have clear implications for global food security and environmental health. A district-scale investigation of Pakistan showed that the country had a national deficit of 0.62 million tons of P and 0.59 million tons of K, but an oversupply of N. The spatial separation was not significant at this resolution; only 6% of the excreta N supply needed to be transported between districts. Recycling all excreta, within and between districts, could cut the use of synthetic N to 43% of its current use and eliminate the need for synthetic K, but there would be an additional need of 0.28 million tons of synthetic P to meet the crop nutrient needs in the entire country. The need for synthetic fertilizers to supplement the recycled excreta nutrients would cost USD 2.77 billion. However, it might not be prohibitively expensive to correct for P deficiencies because of the savings on the costs of synthetic N, and K. Excreta recycling could promote balanced crop nutrition at the national scale in Pakistan, which in turn could eliminate the nutrient-related crop yield gaps in the country. The municipal-scale investigation using Swedish data showed that the country had a national oversupply of 110,000 tons of N, 6,000 tons of P, and 76,000 tons of K. Excreta could provide up to 75% of N and 81% of P, and more than 100% of the K crop needs in the country. The spatial separation was pronounced at the municipal scale in the country. Just 40% of the municipalities produced over 50% of the excreta N and P. Nutrient balance calculations showed that excreta recycling within municipalities could provide 63% of the P crop needs. Another 18% of the P crop needs must be transported from surplus municipalities to deficit municipalities. Nationally, an optimized reallocation of surplus excreta P towards the P deficit municipalities would cost USD 192 million for a total of 24,079 km truck transports. The cost was 3.7 times more than the total NPK fertilizer value transported, and that met the crop nutrient needs. It was concluded that Sweden could potentially reduce its dependence on synthetic fertilizers, but to cover the costs of an improved excreta reuse would require valuing the additional benefits of recycling. An investigation was also done to understand the effect of the input data resolution on the results (transport needs and distances) from a model to optimize excreta redistribution. The results showed that the need for excreta transports, distances, and spatial patterns of the excreta transports changed. Increasing resolution of the spatial data, from political boundaries in Sweden and Pakistan to 0.083 decimal grids (approximately 10 km by 10 km at the equator), showed that transport needs for excreta-N increased by 12% in Pakistan, and the transport needs for excreta-P increased by 14% in Sweden. The effect of the increased resolution on transport analysis showed inconsistency in terms of the excreta total nutrient transportation distance; the average distance decreased by 67% (to 44 km) in Pakistan but increased by 1 km in Sweden. A further increase in the data resolution to 5 km by 5 km grids for Sweden showed that the average transportation distance decreased by 9 km. In both countries, increasing input data resolution resulted in a more favorable cost to fertilizer value ratios. In Pakistan, the cost of transport was only 13% of the NPK fertilizer value transported at a higher resolution. In Sweden, the costs decreased from 3.7 (at the political resolution) to slightly higher than three times of the fertilizer value transported in excreta at the higher data resolution. This Ph.D. thesis shows that we could potentially reduce the total use of synthetic fertilizers in the world and still reduce the yield gaps if we can create a more efficient recycling of nutrients both within and between countries, and a more demand adapted use of synthetic fertilizers. Livsmedelsproduktion är grunden för vårt samhälle idag och för den utveckling som skett det senaste århundrandet. Idag är vi åtta miljarder människor i världen med en produktion och handel med livsmedel, där knappt en miljard lever under hunger och svält. Inom de närmaste decennierna förväntas världens befolkning fortsätta växa och stanna av på omkring 11 till 12 miljarder människor under senare hälften av 2000-talet. För att klara livsmedelsförsörjningen bättre idag, och ännu mer så i framtiden, krävs att vi hittar former för att återföra skördade näringsämnen, som fosfor, kväve och kalium, tillbaka till åkermarken. Många av dessa näringsämnen är ändliga resurser som dessutom bidrar till övergödning om de läcker ut till andra habitat. I dag återfinns det mesta av dessa näringsämnen i gödsel, mänsklig exkreta och rötslam från avloppsreningsverk. Avhandlingen har studerat förutsättningarna för att sluta en större del av näringsämnens cykler i Sverige och Pakistan genom återföring av gödsel och mänsklig exkreta till jordbruksmark, samt utifrån detta även dragit slutsatser om de globala förutsättningar och effekterna av att sluta kretslopp för näringsämnen. Effekterna av att förbättra återförsel av näringsämnen till åkermark innefattar en minskad belastning i miljön som resultat av minskad användning av handelsgödsel, minskad användning av energi för produktion av handelsgödsel, samt framför allt ökade möjligheter för en långsiktigt hållbar hög skörd på åkerarealen. Det finns dock energikostnader vid återförsel av näringsämnen till följd av många och tunga transporter. Avhandlingen har därför analyserat transportkostnader för effektiv återvinning av näringsämnen från djurhållning och mänsklig exkreta och hur stor del av gödselbehovet som kan täckas av dessa återförda näringsämnen. Speciellt har avhandlingen också studerat hur viktigt det är att ta hänsyn till i vilken skala man skall studera problemet, dvs om det är data på gödselbehov och tillgång som är lokala - ända ner på enskilda fält och gårdar - regionala eller nationella som man skall utgå från när man söker efter effektiva lösningar för att sluta näringsämnes cykler. Resultaten visar att större delen av gödselbehovet i både Pakistan och Sverige kan täckas genom återvinning av stallgödsel och mänsklig exkreta. I Sverige kan 81% av fosforbehovet täckas på det viset. Transporterna sker i första hand inom kommuner, 63% av behovet, medan de resterande 18% av behovet som kan täckas kräver transporter som är längre och sker mellan kommuner. Kostnaden för transporterna är däremot höga och motsvarar mer än tre gånger kostnaden för motsvarande handelsgödsel. I Pakistan är kostnadsbilden annorlunda, bl.a. eftersom lönekostnaderna är lägre och handelsgödsel är dyrare än i Sverige. Avhandlingen visar att kostnaden för transporter av gödsel i Pakistan skulle motsvara enbart 13% av kostnaden för motsvarande mängd handelsgödsel. Det mesta av återförandet av näringsämnen sker inom distrikt, till exempel är det bara 6% av kvävebehovet som behöver täckas av transporter utanför distrikten. Pakistans handelsgödselanvändning, och därmed kostnad för detta, skulle vid en effektiv återvinning av näringsämnen kunna reduceras ned till 43% av dagens kostnader för kvävegödsel, för fosfor behövs det 0.28 miljoner ton och behovet av kaliumgödsling skulle helt försvinna. Det krävs därmed handelsgödsel motsvarande 2.77 miljarder USD, vilket till del skulle kunna kompenseras av minskade totala kostnader för kväve- och kaliumgödsel. En sådan återföring av näringsämnen i Pakistan skulle också medföra en högre gödseltillförsel till jordbruket och därmed en möjlighet att reducera skördegapet i landet. Skördegapet i Pakistan är betydande med veteskördar kring 25–30% av de möjliga, och dessa skördegap anses bero just på för små gödselgivor. Pakistan har också tydliga problem med livsmedelsförsörjning på grund av dagens skördegap med 20% av en befolkning på 200 miljoner som är undernärda. För Sveriges del är produktionen och avkastningen per areal till följd av gödsling redan hög. En mer effektiv återförsel av näringsämnen i Sverige skulle därför i första hand bidra till att minska användning av handelsgödsel och därmed begränsa användning av ändliga resurser som fosfor. Analyserna i avhandlingen visar till exempel att i Sverige skulle användning av fosfor som handelsgödsel kunna minska med 67% om återförsel av stallgödsel och mänsklig exkreta effektiviserades. Analyser av globala data för år 2000 – 2016 visar att den årliga tillgången på näring i gödsel (från djur och människor) motsvarar minst 48% av grödornas N behov, 57% av P behovet och 81% av K behovet. Även om den total mängden näring i stallgödsel och mänsklig exkreta inte räcker för att täcka det årliga globala behovet av näring, så visar data på ett överskott på N i minst 29 länder, ett överskott på P i minst 41 länder och 71 länder har ett K-överskott i stallgödsel och exkreta. Om man dessutom räknar in användningen av handelsgödsel blir det ytterligare 42 länder som har överskott på N, 17 länder till med P-överskott och 8 ytterligare med K-överskott. En stor del av resterande länder har ett underskott av näringsämnen (när man summerar gödsel, mänsklig exkreta och handelsgödsel), 57 länder har brist på N, 70 länder behöver mer P och 51 har brist på K i sitt jordbruk, och har därmed lägre skördar än möjligt. Det totala överskottet av näringsämnen i de andra länderna under denna period motsvarar dock rätt väl den brist som länder med underskott uppvisar. Tyvärr är trenden den att de länder som visade på överskott av näringsämnen år 2000 har sammantaget tydligt ökat på överskottet till 2016, medan även underskotten har ökat i flera av länderna med bristande tillförsel av N, P eller K. Sådana globala obalanser har tydliga implikationer för den framtida matförsörjningen och för miljön. Avhandlingen visar att vi idag skulle kunna använda mindre handelsgödsel totalt i världen, och ändå reducera de skördegap som finns, om vi skapar en effektiv återförsel av näringsämnen såväl inom som mellan länder och ett mer behovsanpassat användande av handelsgödsel.
The book offers a rich toolkit of relevant, adoptable ecosystem-based practices that can help the world's 500 million smallholder farm families achieve higher productivity, profitability and resource-use efficiency while enhancing natural capital.
"The vertical farm is a world-changing innovation whose time has come. Dickson Despommier's visionary book provides a blueprint for securing the world's food supply and at the same time solving one of the gravest environmental crises facing us today."--Sting Imagine a world where every town has their own local food source, grown in the safest way possible, where no drop of water or particle of light is wasted, and where a simple elevator ride can transport you to nature's grocery store - imagine the world of the vertical farm. When Columbia professor Dickson Despommier set out to solve America's food, water, and energy crises, he didn't just think big - he thought up. Despommier's stroke of genius, the vertical farm, has excited scientists, architects, and politicians around the globe. Now, in this groundbreaking book, Despommier explains how the vertical farm will have an incredible impact on changing the face of this planet for future generations. Despommier takes readers on an incredible journey inside the vertical farm, buildings filled with fruits and vegetables that will provide local food sources for entire cities. Vertical farms will allow us to: - Grow food 24 hours a day, 365 days a year - Protect crops from unpredictable and harmful weather - Re-use water collected from the indoor environment - Provide jobs for residents - Eliminate use of pesticides, fertilizers, or herbicides - Drastically reduce dependence on fossil fuels - Prevent crop loss due to shipping or storage - Stop agricultural runoff Vertical farms can be built in abandoned buildings and on deserted lots, transforming our cities into urban landscapes which will provide fresh food grown and harvested just around the corner. Possibly the most important aspect of vertical farms is that they can built by nations with little or no arable land, transforming nations which are currently unable to farm into top food producers. In the tradition of the bestselling The World Without Us, The Vertical Farm is a completely original landmark work destined to become an instant classic.
Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.