Download Free Nutrient Management Strategy For The Neuse River Basin Book in PDF and EPUB Free Download. You can read online Nutrient Management Strategy For The Neuse River Basin and write the review.

This research considers how the perceived costs of achieving water quality objectives are sensitive to three issues surrounding model structure and policy design. These issues include: (i) the extent of the regulated market, (ii) the responsibility of the regulated market for background pollution, and (iii) the use of alternative policy instruments. A large-scale process model is used to evaluate and compare the costs of nutrient reduction in the Neuse River Basin in North Carolina under various instruments, including a plan currently being considered by state regulators. The results emphasize the importance of flexibility in both model structure and policy design.
Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth
Water-quality trading is a market-based approach that allows a facility to meet its regulatory obligations by using the pollutant reductions created by another facility capable of doing it at a much lower cost. This resource is a practical guide for wastewater treatment plants to use in evaluating the potential for water-quality trading and provides the framework for designing and implementing the trade.
A large area of coastal waters in the northern Gulf of Mexico experiences seasonal conditions of low levels of dissolved oxygen, a condition known as hypoxia. Excess discharge of nutrients into the Gulf of Mexico from the Mississippi and Atchafalaya rivers causes nutrient overenrichment in the gulf's coastal waters and stimulates the growth of large algae blooms. When these algae die, the process of decomposition depletes dissolved oxygen from the water column and creates hypoxic conditions. In considering how to implement provisions of the Clean Water Act to strengthen nutrient reduction objectives across the Mississippi River basin, the U.S. Environmental Protection Agency (EPA) requested advice from the National Research Council. This book represents the results of the committee's investigations and deliberations, and recommends that the EPA and U.S. Department of Agriculture should jointly establish a Nutrient Control Implementation Initiative to learn more about the effectiveness of actions meant to improve water quality throughout the Mississippi River basin and into the northern Gulf of Mexico. Other recommendations include how to move forward on the larger process of allocating nutrient loading caps-which entails delegating responsibilities for reducing nutrient pollutants such as nitrogen and phosphorus-across the basin.