Download Free Numerical Study Of The Properties Of Compact Stars Book in PDF and EPUB Free Download. You can read online Numerical Study Of The Properties Of Compact Stars and write the review.

This introduction to compact star physics explains key concepts from general relativity, thermodynamics and nuclear physics.
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the “quark star model.” The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.
A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
This self-contained introduction to compact star physics explains important concepts from areas such as general relativity, thermodynamics, statistical mechanics, and nuclear physics. Containing many tested exercises, and written by an international expert in the research field, the book provides important insights on the basic concepts of compact stars, discusses white dwarfs, neutron stars, quark stars and exotic compact stars. Included are sections on astrophysical observations of compact stars, and present and future terrestrial experiments related to compact stars physics, as the study of exotic nuclei and relativistic heavy-ion collisions. Major developments in the field such as the discovery of massive neutron stars, and a discussion of the recent gravitational wave measurement of a neutron star merger are also presented. This book is ideal for graduate students and researchers working on the physics of compact stars, general relativity and nuclear physics.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
In the wake of the recent detection of gravitational wave signal GW150914, we investigate whether GW150914 could have been produced by something other than a binary black hole system. Our proposed candidate is a binary system of solitonic boson stars. The choice of solitonic boson stars is due mainly to the structural properties of their ground states, as solitonic boson stars are capable of forming very compact thin-wall ground states which would likely correctly mimic the gravitational signature of the merger phase of the binary system lifecycle. On the other hand, the question of whether solitonic boson stars could also mimic the gravitational signature of the subsequent ringdown phase is still open. Since there is no hope of replicating the signature if these thin-wall ground states are not stable with respect to small perturbations, our ultimate goal is to study the stability properties of these thin-wall ground states numerically. Pursuing this goal, we have successfully developed numerical methods for both the computation of ground states of boson stars and the simulation of boson stars exposed to a small perturbation from a real scalar field. Our methods can compute the desired thin-wall ground states of solitonic boson stars, as well as produce a simulation of a perturbed ground state of a mini-boson star. We provide a thorough look at the implementation details of these methods and present our current computational results.
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
This book aims at providing an accessible, and yet comprehensive and self-contained discussion of compact stars. After a pedagogical introduction to the physics of white dwarfs, the bulk of the book is devoted to the analysis of the structure and dynamics of neutron stars. A great deal of emphasis is placed on the dynamical models underlying the description of neutron star matter at microscopic level. The analysis of these models is inherently cross-disciplinary - from nuclear and particle physics to astrophysics and condensed matter physics – and the relevant concepts are introduced following a didactic approach, drawing largely on the historical development of the field. The impact of the latest experimental data, such as gravitational waves emissions, and the potential of future observational developments in the new era of multimessenger astronomy are extensively discussed. This volume is intended to provide PhD students in physics and astrophysics with solid foundations for their future research career. It is also a useful tool for the broader audience of more advanced readers, working in the fields of nuclear and particle physics as well as gravitational physics.