Download Free Numerical Simulations Of Incompressible Flows In Complex Geometries Book in PDF and EPUB Free Download. You can read online Numerical Simulations Of Incompressible Flows In Complex Geometries and write the review.

"Consists mainly of papers presented at a workshop ... held in Half Moon Bay, California, June 19-21, 2001 ... to honor Dr. Dochan Kwak on the occasion of his 60th birthday ... organized by M. Hafez of University of California Davis and Dong Ho Lee of Seoul National University"--Dedication, p. ix.
This book consists of 37 articles dealing with simulation of incompressible flows and applications in many areas. It covers numerical methods and algorithm developments as well as applications in aeronautics and other areas. It represents the state of the art in the field. Contents: NavierOCoStokes Solvers; Projection Methods; Finite Element Methods; Higher-Order Methods; Innovative Methods; Applications in Aeronautics; Applications Beyond Aeronautics; Multiphase and Cavitating Flows; Special Topics. Readership: Researchers and graduate students in computational science and engineering."
In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.
This handbook covers computational fluid dynamics from fundamentals to applications. This text provides a well documented critical survey of numerical methods for fluid mechanics, and gives a state-of-the-art description of computational fluid mechanics, considering numerical analysis, computer technology, and visualization tools. The chapters in this book are invaluable tools for reaching a deeper understanding of the problems associated with the calculation of fluid motion in various situations: inviscid and viscous, incompressible and compressible, steady and unsteady, laminar and turbulent flows, as well as simple and complex geometries. Each chapter includes a related bibliography Covers fundamentals and applications Provides a deeper understanding of the problems associated with the calculation of fluid motion
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors’ field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.
The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating turbopumps (cavitation surge, rotating cavitation, higher order cavitation surge, rotordynamic whirl forces). Finally, the third part of the book illustrates the alternative approaches for the simulation of cavitating flows, with emphasis on both modeling and numerical aspects. Examples of applications to the simulation of unsteady cavitation in internal flows through hydraulic machinery are illustrated in detail.
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions
This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.
The monograph is devoted to modern mathematical models and numerical methods for solving gas- and ?uid-dynamic problems based on them. Two interconnected mathematical models generalizing the Navier–Stokes system are presented; they differ from the Navier–Stokes system by additional dissipative terms with a small parameter as a coef?cient. The new models are called the quasi-gas-dynamic and quasi-hydrodynamic equations. Based on these equations, effective ?nite-difference algorithms for calculating viscous nonstationary ?ows are constructed and examples of numerical computations are presented. The universality, the ef?ciency, and the exactness of the algorithms constructed are ensured by the ful?llment of integral conservation laws and the theorem on entropy balance for them. The book is a course of lectures and is intended for scientists and engineers who deal with constructing numerical algorithms and performing practical calculations of gas and ?uid ?ows and also for students and postgraduate students who specialize in numerical gas and ?uid dynamics.