Download Free Numerical Simulation Of Separated Flows Book in PDF and EPUB Free Download. You can read online Numerical Simulation Of Separated Flows and write the review.

Der Band enthält den Abschlußbericht des DFG-Schwerpunktprogramms "Flußsimulation mit Höchstleistungsrechnern". Es führt die Arbeiten fort, die schon als Band 38 in der Reihe "Notes on Numerical Fluid Mechanics" erschienen sind.Work is reported, which was sponsored by the Deutsche Forschungsgemeinschaft from 1993 to 1995. Scientists from numerical mathematics, fluid mechanics, aerodynamics, and turbomachinery present their work on flow simulation with massively parallel systems, on the direct and large-eddy simulation of turbulence, and on mathematical foundations, general solution techniques and applications. Results are reported from benchmark computations of laminar flow around a cylinder, in which seventeen groups participated.
Shock-induced flow separation and its subsequent reattachment are encountered in many configurations, such as supersonic inlets or rocket nozzles. These phenomena involve complex interactions of boundary layers with compression or expansion waves and exhibit a low-frequency unsteady behaviour which still requires a clear explanation. This study aims at better identifying the physical mechanisms which drive the global structure of these flows and suggesting improved numerical tools in order to predict these more accurately. The appearance of free and restricted separations in supersonic separated jets is more particularly investigated. Various hypotheses are tested to explain the evolution of the associated unsteady asymmetric wall pressure field in function of the nozzle pressure ratio. New numerical strategies are proposed and lead to identify more accurately the appearance of free and restricted separations and the time-varying morphology of the flow during the transition process. Possible origins of side-load activities are extensively investigated by performing the azimuthal expansion of wall pressure field.
This Volume is the Proceedings of the IUTAM Symposium on Unsteady Separated Flows and Their Control held in Corfu, Greece, 18–22 June 2007. This was the second IUTAM Symposium on this subject, following the symposium in Toulouse, in April 2002. The Symposium consisted of single plenary sessions with invited lectures, - lected oral presentations, discussions on special topics and posters. The complete set of papers was provided to all participants at the meeting. The thematic sessions of this Symposium are presented in the following: Experimental techniques for the unsteady ow separation Theoretical aspects and analytical approaches of ow separation Instability and transition Compressibility effects related to unsteady separation Statistical and hybrid turbulence modelling for unsteady separated ows Direct and Large-Eddy Simulation of unsteady separated ows Theoretical/industrial aspects of unsteady separated ow control This IUTAM Symposium concerned an important domain of Theoretical and Applied Mechanics nowadays. It focused on the problem of ow separation and of its control. It achieved a uni ed approach regrouping the knowledge provided from theoretical, experimental, numerical simulation and modelling aspects for unsteady separated ows (incompressible and compressible regimes) and included ef cient control devices to achieve attenuation or suppression of separation. The subject - eas covered important themes in the domain of fundamental research as well as in the domain of applications.
Separated flows and jets are closely linked in a variety of applications. They are of great importance in various fields of fluid mechanics including vehicle efficiency, technical branches concerned with gas/liquid flows, atmospheric effects on various constructions, etc. Knowledge of the physics of separated flows and jets and the development of reliable control techniques are prerequisite for future progress in the field. These aspects were in focus during the IUTAM-Symposium which was held in Novosibirsk, 9-13 July, 1990. This volume contains a selection of papers presenting recent results of theoretical and numerical studies as well as experimental work on separated flows and jets. The topics include sub- and supersonic, laminar and turbulent separation as well as organized structures in separated flows and jets. The reader will find here the state of the art and major trends for research in this field of aero-hydrodynamics.
This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.
Two unsteady flows dominated by the occurrence of separation are simulated through the use of the discrete vortex model. The first of these is a sinusoidally oscillating flow about a circular cylinder at a Keulegan-Carpenter number of K = 10. The vortex model has been combined with the boundary layer calculations and the positions of the separation and stagnation points, the evolution of the wake, the velocity and pressure distributions, and the instantaneous forces have been calculated and compared, whenever possible, with those obtained experimentally. The model has successfully simulated the occurrence of the transverse half Karman vortex street. The calculated positions of the vortices were found to be in good agreement with those obtained experimentally. The measured and calculated in-line forces and the differential pressure distributions showed reasonably good agreement. The second simulation dealt with a rapidly decelerating flow about a two-dimensional sharp-edged camber. An extensive study of the velocity field in the vicinity of the singular points led to the development of a novel method for the introduction of vorticity at variable time intervals. The measured and calculated characteristics of the flow, such as the evolution of the wake and the forces acting on the camber, were found to be in excellent agreement. Futhermore, the simulation provided a plausible explanation for the cause of parachute collapse, a phenomenon which gave impetus to the numerical and physical experiments described herein.