Download Free Numerical Simulation Of Non Newtonian Fluid Flow Book in PDF and EPUB Free Download. You can read online Numerical Simulation Of Non Newtonian Fluid Flow and write the review.

Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.
Originally published in 1993, this book was the first to offer a comprehensive review of large eddy simulations (LES) - the history, state of the art, and promising directions for research. Among topics covered are fundamentals of LES; LES of incompressible, compressible, and reacting flows; LES of atmospheric, oceanic, and environmental flows; and LES and massivelt parallel computing. The book grew out of an international workshop that, for the first time, brought together leading researchers in engineering and geophysics to discuss developments and applications of LES models in their respective fields. It will be of value to anyone with an interest in turbulence modelling.
Non-Newtonian materials are encountered in virtually all of the chemical and process industries and a full understanding of their nature and flow characteristics is an essential requirement for engineers and scientists involved in their formulation and handling. This book will bridge the gap between much of the highly theoretical and mathematically complex work of the rheologist and the practical needs of those who have to design and operate plants in which these materials are handled and processed. At the same time, numerous references are included for the benefit of those who need to delve more deeply into the subject.The starting point for any work on non-newtonian fluids is their characterisation over the range of conditions to which they are likely to be subjected during manufacture or utilisation, and this topic is treated early on in the book in a chapter commissioned from an expert in the field of rheological measurements. Coverage of topics is extensive and this book offers a unique and rich selection of material including the flow of single phase and multiphase mixtures in pipes, in packed and fluidised bed systems, heat and mass transfer in boundary layers and in simple duct flows, and mixing etc.An important and novel feature of the book is the inclusion of a wide selection of worked examples to illustrate the methods of calculation. It also incorporates a large selection of problems for the reader to tackle himself.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications.
This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
"Consists mainly of papers presented at a workshop ... held in Half Moon Bay, California, June 19-21, 2001 ... to honor Dr. Dochan Kwak on the occasion of his 60th birthday ... organized by M. Hafez of University of California Davis and Dong Ho Lee of Seoul National University"--Dedication, p. ix.