Download Free Numerical Simulation Of Airflow And Particle Deposition In Bronchial Airway Bifurcation Models Book in PDF and EPUB Free Download. You can read online Numerical Simulation Of Airflow And Particle Deposition In Bronchial Airway Bifurcation Models and write the review.

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.
Morphometry of the Human Lung considers the developments in understanding the quantitative anatomy of the lung, and in the correlation of anatomy with physiology. This book is composed of 11 chapters, and begins with an overview of a systematic approach to a quantitative morphologic analysis of the architecture of the human lung, followed by a presentation of general problems of methodology and the derivation of reliable dimensional models of this organ. The subsequent chapters describe the methods of preparation of tissues, methods of random sampling, and adaptation of methodologies from other fields of science. These topics are followed by discussions the mathematical formulations for the translation of the data into the desired geometric forms and a technique of counting. The final chapters look into the mode of distribution and geometric forms that should eventually facilitate mathematical and physical considerations regarding the function of the lungs. These chapters also consider the application of these quantitative methods to the study of pathologic specimens, providing a most timely renovation of morphologic pathology. This book will be of value to pulmonologists, physiologists, and researchers who are interested in lung morphometry.
A comprehensive look at current drug discovery and development methods—and the roadmap for the future Providing both understanding and guidance in characterizing potential drugs and their production and synthesis, Development of Therapeutic Agents Handbook gives professionals a basic tool to facilitate research and development within this challenging process. This comprehensive text brings together, in one resource, a compendium of concepts, approaches, methodologies, and limitations that need to be considered in the formulation of therapeutic agents across a range of therapeutic fields. Both a reference and a call to action for the pharmaceutical industry, Development of Therapeutic Agents Handbook examines recent innovations taking shape in the various medical disciplines involved in drug discovery, and shows why these advances need to be embraced universally among researchers to improve their solution strategies. Additional subject matter includes: Extensive coverage and in-depth look into novel treatments and therapeutics Discussion of hot topics like new drugs and nutraceuticals, the discovery and development of vaccines, cancer therapeutics, and market overviews Coverage of therapeutic drug development for specific disease areas, such as cardiology, oncology, breast cancer, and kidney diseases As research in biology, chemistry, medicine, and technology rapidly progresses, it is becoming increasingly important for medical researchers to maintain an up-to-date knowledge base of emerging trends directing promising new therapies. Development of Therapeutic Agents Handbook serves this purpose, acting as both a one-stop reference rich in valid science, and a tool to carve out new pathways in the pursuit of bringing safer and more effective drugs to the marketplace.
The Mechanics of Inhaled Pharmaceutical Aerosols, An Introduction provides a unique and comprehensive treatment of the mechanics of inhaled pharmaceutical aerosols. The book covers a wide range of topics and many new perspectives are given by drawing on research from a variety of fields. Novel, in-depth expositions of the most common delivery devices are given, including nebulizers, dry powder inhalers and propellant metered dose inhalers. The behaviour of aerosols in the respiratory tract is explained in detail, with complete coverage of the fundamentals of current deposition models. The book begins by providing a comprehensive introduction to aspects of aerosol mechanics that are relevant to inhaled pharmaceutical aerosols. It then gives an exhaustive pedagogical description of the behaviour of evaporating and condensing droplets (both aqueous and propellant-based), an introductory chapter on lung geometry and inhalation patterns, and coverage of relevant aspects of fluid mechanics in the lung. Finally, the book provides invaluable, detailed coverage on the mechanics of common pharmaceutical aerosol delivery systems and deposition in the respiratory tract. Throughout the book are many detailed numerical examples that apply the salient concepts to typical inhaled pharmaceutical aerosols. This book will be of interest to scientists and engineers involved in the research and development of inhaled pharmaceutical aerosol products. Experienced practitioners will find many new perspectives that will greatly enhance their understanding of this complex and rapidly growing field. For those delivering therapeutic agents to the lung, this book is a must-have. Students and academics will find this book an invaluable tool and for newcomers it is a worthy guide to the diverse fields that must be understood to work in the area of inhaled pharmaceutical aerosols.
The #1 guide to aerosol science and technology -now better than ever Since 1982, Aerosol Technology has been the text of choice among students and professionals who need to acquire a thorough working knowledge of modern aerosol theory and applications. Now revised to reflect the considerable advances that have been made over the past seventeen years across a broad spectrum of aerosol-related application areas - from occupational hygiene and biomedical technology to microelectronics and pollution control -this new edition includes: * A chapter on bioaerosols * New sections on resuspension, transport losses, respiratory deposition models, and fractal characterization of particles * Expanded coverage of atmospheric aerosols, including background aerosols and urban aerosols * A section on the impact of aerosols on global warming and ozone depletion. Aerosol Technology, Second Edition also features dozens of new, fully worked examples drawn from a wide range of industrial and research settings, plus new chapter-end practice problems to help readers master the material quickly.
This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.
This book contains all the material necessary for a course on the numerical solution of differential equations.
This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.
The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.