Download Free Numerical Ship Hydrodynamics Book in PDF and EPUB Free Download. You can read online Numerical Ship Hydrodynamics and write the review.

This book explores computational fluid dynamics applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Tokyo 2015 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage, trim and self-propulsion) and local flow (wave elevations, mean velocities and turbulence) variables, including standard deviations for global variables. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors and standard deviations are also assessed for added resistance (captive test cases) and course keeping/speed loss (free running test cases) in head and oblique waves. All submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations.
Practical Ship Hydrodynamics provides a comprehensive overview of hydrodynamic experimental and numerical methods for ship resistance and propulsion, maneuvering, seakeeping and vibration. Beginning with an overview of problems and approaches, including the basics of modeling and full scale testing, expert author Volker Bertram introduces the marine applications of computational fluid dynamics and boundary element methods. Expanded and updated, this new edition includes: Otherwise disparate information on the factors affecting ship hydrodynamics, combined to provide one practical, go-to resource. Full coverage of new developments in computational methods and model testing techniques relating to marine design and development. New chapters on hydrodynamic aspects of ship vibrations and hydrodynamic options for fuel efficiency, and increased coverage of simple design estimates of hydrodynamic quantities such as resistance and wake fraction. With a strong focus on essential background for real-life modeling, this book is an ideal reference for practicing naval architects and graduate students.
This book assesses the state-of-the-art in computational fluid dynamics (CFD) applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Gothenburg 2010 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage and trim and self-propulsion) and local flow (wave elevations and mean velocities and turbulence) variables, including standard deviations for global variables and propeller modeling for self-propulsion. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors are also analyzed for head-wave seakeeping and forward speed diffraction, and calm-water forward speed-roll decay. Resistance submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations. Post-workshop experimental and computational studies are conducted and analyzed for evaluation of facility biases and to draw more concrete conclusions regarding the most reliable turbulence model, appropriate numerical methods and grid resolution requirements, respectively.
Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion Lothar Birk, University of New Orleans, USA Bridging the information gap between fluid mechanics and ship hydrodynamics Fundamentals of Ship Hydrodynamics is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained. The book is subdivided into sixty chapters, providing background material for individual lectures. The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace. Key features: • Covers the range from basic fluid mechanics to applied ship hydrodynamics. • Subdivided into 60 succinct chapters. • In-depth coverage of material enables self-study. • Around 250 figures and tables. Fundamentals of Ship Hydrodynamics is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.
The Twenty-Second Symposium on Naval Hydrodynamics was held in Washington, D.C., from August 9-14, 1998. It coincided with the 100th anniversary of the David Taylor Model Basin. This international symposium was organized jointly by the Office of Naval Research (Mechanics and Energy Conversion S&T Division), the National Research Council (Naval Studies Board), and the Naval Surface Warfare Center, Carderock Division (David Taylor Model Basin). This biennial symposium promotes the technical exchange of naval research developments of common interest to all the countries of the world. The forum encourages both formal and informal discussion of the presented papers, and the occasion provides an opportunity for direct communication between international peers.
This book reports on research on and experience with needle exchange and bleach distribution programs and their effects on rates of drug use, the behavior of injection drug users, and the spread of HIV and other infectious diseases among injection drug users. It discusses U.S. needle exchange data, international evaluations of needle exchange programs, legal issues and drug paraphernalia laws, evaluation methods, and bleach distribution programs.
In this book an introduction is given to aspects of water waves that play a role in ship hydrodynamics and offshore engineering. At first the equations and linearized boundary conditions are derived describing the non-viscous free surface water waves, with special attention to the combination of steady and non-steady flow fields. Then some simple kinds of free wave solutions are derived, such as plane waves and cylindrical waves. For several situations, steady and unsteady, the source singularity function is derived. These functions play a role in numerical codes used to describe the motion of ships and offshore structures. These codes are mostly based on a boundary integral formulation; therefore we give an introduction to these methods. It is shown how first order ship motions can be determined. In offshore engineering the second order wave drift motions play an important role. An introduction to this phenomenon is given and the effects which have to be taken into account are explained by means of a simple example where we can determine nearly all the aspects analytically. An interesting example that is worked out is the motion of very large floating flexible platforms with finite draft. Finally an introduction to the theory of shallow water non-linear dispersive waves is presented, and shallow water ship hydrodynamics, that plays a role in coastal areas and channels is treated. Here attention is paid to the interaction between passing ships in restricted water. In the appendix a short introduction to some of the mathematical tools is given.
"In this work, ship hydrodynamics during inland waterway transport and ship maneuvering are investigated using CFD (Computational Fluid Dynamics) based on OpenFoam. Validation and verification studies are carried out for the mesh convergence, time step convergence, sensitivity to turbulence models and dynamic mesh techniques. A quaternion-based 6DoF motion solver is implemented for the trim and sinkage predictions. Environmental effects on several inland vessels (convoy 1, convoy 2, tanker) are studied using the validated numerical models. Three important aspects, the confinement effect of the waterway, head-on encounter, and ship-bridge pile interaction are simulated. The testing conditions cover a wide range, including various channel dimensions, water depths, ship draughts and speeds. The ship resistance, wave pattern, Kelvin angle and wave elevation at specific positions are investigated as functions of these parameters. Ship maneuvering is investigated using virtual captive model tests based on the MMG (Mathematical Maneuvering Group) model. An actuator disk is implemented to replace the real propeller. Open water test, rudder force test, OTT (Oblique Towing Tank test) and CMT (Circular Motion Test) of a KVLCC2 model are carried out to obtain the hydrodynamic coefficients of the propeller, rudder and ship hull. Using the obtained coefficients, system-based maneuvering simulations are carried out and validated using the free running test data. These studies reproduce real ship tests and thus prove the validity of our numerical models. As a result, the numerical solver is promising in ship hydrodynamics and marine engineering simulations"--
A textbook that offers a unified treatment of the applications of hydrodynamics to marine problems. The applications of hydrodynamics to naval architecture and marine engineering expanded dramatically in the 1960s and 1970s. This classic textbook, originally published in 1977, filled the need for a single volume on the applications of hydrodynamics to marine problems. The book is solidly based on fundamentals, but it also guides the student to an understanding of engineering applications through its consideration of realistic configurations. The book takes a balanced approach between theory and empirics, providing the necessary theoretical background for an intelligent evaluation and application of empirical procedures. It also serves as an introduction to more specialized research methods. It unifies the seemingly diverse problems of marine hydrodynamics by examining them not as separate problems but as related applications of the general field of hydrodynamics. The book evolved from a first-year graduate course in MIT's Department of Ocean Engineering. A knowledge of advanced calculus is assumed. Students will find a previous introductory course in fluid dynamics helpful, but the book presents the necessary fundamentals in a self-contained manner. The 40th anniversary of this pioneering book offers a foreword by John Grue. Contents Model Testing • The Motion of a Viscous Fluid • The Motion of an Ideal Fluid • Lifting Surfaces • Waves and Wave Effects • Hydrodynamics of Slender Bodies