Download Free Numerical Methods For Nonlinear Optimal Control Problems Book in PDF and EPUB Free Download. You can read online Numerical Methods For Nonlinear Optimal Control Problems and write the review.

While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.
A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.
"Optimal Control" reports on new theoretical and practical advances essential for analysing and synthesizing optimal controls of dynamical systems governed by partial and ordinary differential equations. New necessary and sufficient conditions for optimality are given. Recent advances in numerical methods are discussed. These have been achieved through new techniques for solving large-sized nonlinear programs with sparse Hessians, and through a combination of direct and indirect methods for solving the multipoint boundary value problem. The book also focuses on the construction of feedback controls for nonlinear systems and highlights advances in the theory of problems with uncertainty. Decomposition methods of nonlinear systems and new techniques for constructing feedback controls for state- and control constrained linear quadratic systems are presented. The book offers solutions to many complex practical optimal control problems.
While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
The central focus of this book is the control of continuous-time/continuous-space nonlinear systems. Using new techniques that employ the max-plus algebra, the author addresses several classes of nonlinear control problems, including nonlinear optimal control problems and nonlinear robust/H-infinity control and estimation problems. Several numerical techniques are employed, including a max-plus eigenvector approach and an approach that avoids the curse-of-dimensionality. The max-plus-based methods examined in this work belong to an entirely new class of numerical methods for the solution of nonlinear control problems and their associated Hamilton–Jacobi–Bellman (HJB) PDEs; these methods are not equivalent to either of the more commonly used finite element or characteristic approaches. Max-Plus Methods for Nonlinear Control and Estimation will be of interest to applied mathematicians, engineers, and graduate students interested in the control of nonlinear systems through the implementation of recently developed numerical methods.
This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.