Download Free Numerical Methods For Diffusion Phenomena In Building Physics Book in PDF and EPUB Free Download. You can read online Numerical Methods For Diffusion Phenomena In Building Physics and write the review.

This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.
Diffusion is a principle transport mechanism emerging widely at different scale, from nano to micro and macro levels. This is a contributed book of seventh chapters encompassing local and no-local diffusion phenomena modelled with integer-order (local) and non-local operators. This book collates research results developed by scientists from different countries but with common research interest in modelling of diffusion problems. The results reported encompass diffusion problems related to efficient numerical modelling, hypersonic flows, approximate analytical solutions of solvent diffusion in polymers and wetting of soils. Some chapters are devoted to fractional diffusion problem with operators with singular and non-singular memory kernels. The book content cannot present the entire rich area of problems related to modelling of diffusion phenomena but allow seeing some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels the numerical methods and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research.The book is oriented to researchers; master and PhD students involved in diffusion problems with a variety of application and could serves as a rich reference source and a collection of texts provoking new ideas.
Readable and authoritative text teaches basics of diffusion phenomena and their methods of solution through physical examples. Emphasis on modeling, methodology bridging physico-chemical statements and reduction to diffusion problems. 2001 edition.
This book is a second edition of the one that was published by John Wiley & Sons in 1988. It carries a new title because the former one, A Primer of Diffusion Problems, gave the impression of consisting merely of a set of problems relating to diffusion. Nonetheless, my intention was clearly spelled out and it remains the same, namely, to teach basic aspects and methods of solution for diffusion phenomena through physical examples. Again, I emphasize that the coverage is not encyclopedic. There exist already several outstanding works of that nature, for example, J. Philibert's Atom Movements, Diffusion and Mass Transport in Solids. My emphasis is on modeling and methodology. This book should thus constitute a consistent introduction to diffusion phenomena, whatever their origin or further application. This edition has been largely revised. It contains a completely new chapter and three new appendices. I have added several new exercises stemming from my experience in teaching this material over the last 15 years. I hope that they will be instructive to the reader for they were not chosen perfunctorily. Although they are the bane of authors and of readers, I have retained footnotes if they might help the reader's comprehension. Additional, but nonessential material is collected at the end of chapters, and is indicated in the text by superscripts.
The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.
Present issue is devoted to problems classical mass diffusion such as phase transformations, corrosion behavior, coatings and microstructures and extensions to new research in the field of nanotechnology. Were investigated classical carbon and alloy steel
This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measurement of relevant transport properties, and (d) the numerical investigation and application The main benefit of the book is that it discusses all the topics related to numerical simulation tools in building components (including state-of-the-art and applications) and presents some of the most important theoretical and numerical developments in building physics, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, this book will be going to the encounter of a variety of scientific and engineering disciplines, such as civil and mechanical engineering, architecture, etc... The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.
This book provides a collection of recent research works related to building pathologies, in order to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behavior of buildings, durability and diagnostic techniques and, simultaneously, show the most recent advances in this domain. It is divided into six chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers, and other interested parties to network. At the same time, this book encounters a variety of scientific and engineering disciplines, such as civil, mechanical, and materials engineering.