Download Free Number Theoretic Methods In Statistics Book in PDF and EPUB Free Download. You can read online Number Theoretic Methods In Statistics and write the review.

This book is a survey of recent work on the application of number theory in statistics. The essence of number-theoretic methods is to find a set of points that are universally scattered over an s-dimensional unit cube. In certain circumstances this set can be used instead of random numbers in the Monte Carlo method. The idea can also be applied to other problems such as in experimental design. This book will illustrate the idea of number-theoretic methods and their application in statistics. The emphasis is on applying the methods to practical problems so only part-proofs of theorems are given.
Owing to the developments and applications of computer science, ma thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. The progress achieved has been both important practically as well as satisfactory from the theoretical view point. It'or example, from the seventeenth century till now, a great deal of effort was made in developing methods for approximating single integrals and there were only a few works on multiple quadrature until the 1950's. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one. The number theoretic method may be described as follows. We use num ber theory to construct a sequence of uniformly distributed sets in the s dimensional unit cube G , where s ~ 2. Then we use the sequence to s reduce a difficult analytic problem to an arithmetic problem which may be calculated by computer. For example, we may use the arithmetic mean of the values of integrand in a given uniformly distributed set of G to ap s proximate the definite integral over G such that the principal order of the s error term is shown to be of the best possible kind, if the integrand satis fies certain conditions.
The first unified treatment of the interface between information theory and emerging topics in data science, written in a clear, tutorial style. Covering topics such as data acquisition, representation, analysis, and communication, it is ideal for graduate students and researchers in information theory, signal processing, and machine learning.
This 2001 book provides a basic background in numerical analysis and its applications in statistics.
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
This concise monograph by a well-known mathematician shows how probability theory, in its simplest form, arises in a variety of contexts and in many different mathematical disciplines. 1959 edition.
The second edition of this monograph describes the set-theoretic approach for the control and analysis of dynamic systems, both from a theoretical and practical standpoint. This approach is linked to fundamental control problems, such as Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis. Completely self-contained, this book provides a solid foundation of mathematical techniques and applications, extensive references to the relevant literature, and numerous avenues for further theoretical study. All the material from the first edition has been updated to reflect the most recent developments in the field, and a new chapter on switching systems has been added. Each chapter contains examples, case studies, and exercises to allow for a better understanding of theoretical concepts by practical application. The mathematical language is kept to the minimum level necessary for the adequate formulation and statement of the main concepts, yet allowing for a detailed exposition of the numerical algorithms for the solution of the proposed problems. Set-Theoretic Methods in Control will appeal to both researchers and practitioners in control engineering and applied mathematics. It is also well-suited as a textbook for graduate students in these areas. Praise for the First Edition "This is an excellent book, full of new ideas and collecting a lot of diverse material related to set-theoretic methods. It can be recommended to a wide control community audience." - B. T. Polyak, Mathematical Reviews "This book is an outstanding monograph of a recent research trend in control. It reflects the vast experience of the authors as well as their noticeable contributions to the development of this field...[It] is highly recommended to PhD students and researchers working in control engineering or applied mathematics. The material can also be used for graduate courses in these areas." - Octavian Pastravanu, Zentralblatt MATH
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)