Download Free Nucleic Acid Therapeutics In Cancer Book in PDF and EPUB Free Download. You can read online Nucleic Acid Therapeutics In Cancer and write the review.

Nucleic Acids as Gene Anticancer Drug Delivery Therapy highlights the most recent developments in cancer treatment using nucleic acids, nanoparticles and polymer nanoparticles for genomic nanocarriers as drug delivery, including promising opportunities for targeted and combination therapy. The development of a wide spectrum of nanoscale technologies is beginning to change the scientific landscape in terms of disease diagnosis, treatment, and prevention. This book presents the use of nanotechnology for medical applications, focusing on its use for anticancer drug delivery. Various intelligent drug delivery systems such as inorganic nanoparticles and polymer-based drug delivery are discussed. The use of smart drug delivery systems seems to be a promising approach for developing intelligent therapeutic systems for cancer immunotherapies and is discussed in detail along with nucleic acid-targeted drug delivery combination therapy for cancer. Nucleic Acids as Gene Anticancer Drug Delivery Therapy will be a useful reference for pharmaceutical scientists, pharmacologiests, and those involved in nanotechnology and cancer research. - Discusses intelligent drug delivery systems such as inorganic nanoparticles and polymer-based drug delivery - Contains a comprehensive comparison of various delivery systems, listing their advantages and limitations - Presents combination therapy as a new hope for enhancing current gene-based treatment efficacy
This book provides a compelling overall update on current status of RNA interference
Nucleic Acid Nanotheranostics: Biomedical Applications offers a comprehensive overview of improvements and new trends in fabrication of nanostructures as theranostic multifunctional carriers in gene therapy. With a strong focus on medical applications (comprising diagnosis, therapy and imaging), the book also examines gene therapy in an individual patient's cells or tissues to treat genetic diseases. Sections cover Biomedical and Diagnostic applications of Nucleic Acids, Biologic and Synthetic Advanced Nanostructures for nucleic acid delivery, and important considerations of nanomedicine. This book is a valuable guide for materials scientists, physicians, chemists and engineers, but is also ideal for clinicians wishing to expand their knowledge.
Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids addresses several issues related to safe and effective delivery of nucleic acids (NAs) using nanoparticles. A further emphasis would be laid on the mechanism of delivery of NAs, the barriers encountered and the strategies adapted to combat them. An exhaustive account of the advantages as well shortcomings of all the delivery vectors being employed in delivery of various NAs will be provided. On final note the regulatory aspects of nanoparticles mediated NA would be discussed, with focus on their clinical relevance. The design and development of nucleic acid-based therapeutics for the treatment of diseases arising from genetic abnormalities has made significant progress over the past few years. NAs have been widely explored for the treatment of cancer and infectious diseases or to block cell proliferation and thereby caused diseases. Advances in synthetic oligonucleotide chemistry resulted in synthesis of NAs that are relatively stable in in vivo environments. However, cellular targeting and intracellular delivery of NAs still remains a challenge. Further development of NA-based therapeutics depends on the progress of safe and effective carriers for systemic administration. Nanomedicine has facilitated availability of vectors with diminished cytotoxicity and enhanced efficacy which are rapidly emerging as systems of choice. These vectors protect NAs from enzymatic degradation by forming condensed complexes along with targeted tissue and cellular delivery. During the past few years, a myriad reports have appeared reporting delivery of NAs mediated by nanoparticles. This book will provide an overview of nanoparticles being employed in the in vitro and in vivo delivery of therapeutically relevant NAs like DNA, siRNA, LNA, PNA, etc. - Provides a complete overview of the applicatiosn of nanomedicine in the delivery of nucleic acids, from characterization of nanoparticles, to in vitro and in vivo studies - Discusses delivery issues of less well explored nucleic acids, like PNAs, Ribozymes, DNAzymes, etc. - Summarizes the current state of research in nucleic acid delivery and underscores the future of nanomedicine in this field
The sequencing of the human genome and subsequent elucidation of the molecular pathways that are important in the pathology of disease have provided unprecedented opportunities for the development of new therapeutics. Nucleic acid-based drugs have emerged in recent years to yield extremely promising candidates for drug therapy to a wide range of diseases. Advances in Nucleic Acid Therapeutics is a comprehensive review of the latest advances in the field, covering the background of the development of nucleic acids for therapeutic purposes to the array of drug development approaches currently being pursued using antisense, RNAi, aptamer, immune modulatory and other synthetic oligonucleotides. Nucleic acid therapeutics is a field that has been continually innovating to meet the challenges of drug discovery and development; bringing contributions together from leaders at the forefront of progress, this book depicts the many approaches currently being pursued in both academia and industry. A go-to volume for medicinal chemists, Advances in Nucleic Acid Therapeutics provides a broad overview of techniques of contemporary interest in drug discovery.
New Antisense Strategies: Chemical Synthesis of RNA Oligomers, by Junichi Yano und Gerald E. Smyth Development and Modification of Decoy Oligodeoxynucleotides for Clinical Application, by Mariana Kiomy Osako, Hironori Nakagami und Ryuichi Morishita Modulation of Endosomal Toll-Like Receptor-Mediated Immune Responses by Synthetic Oligonucleotides, by Ekambar R. Kandimalla und Sudhir Agrawal Delivery of Nucleic Acid Drugs, by Yan Lee und Kazunori Kataoka Aptamer: Biology to Applications, by Yoshikazu Nakamura Development and Clinical Applications of Nucleic Acid Therapeutics, by Veenu Aishwarya, Anna Kalota und Alan M. Gewirtz
Polymers and Nanomaterials for Gene Therapy provides the latest information on gene therapy, a topic that has attracted significant attention over the past two decades for the treatment of inherited and acquired genetic diseases. Major research efforts are currently focused on designing suitable carrier vectors that compact and protect oligonucleotides for gene therapy. The book explores the most recent developments in the field of polymer science and nanotechnology, and how these advancements have helped in the design of advanced materials. Non-viral vector systems, including cationic lipids, polymers, dendrimers, peptides and nanoparticles, are potential routes for compacting DNA for systemic delivery. However, unlike viral analogues that have no difficulty in overcoming cellular barriers and immune defense mechanisms, non-viral gene carriers consistently exhibit significant reduced transfection efficiency due to numerous extra- and intracellular obstacles. Therefore, biocompatibility and potential for large-scale production make these compounds increasingly attractive for gene therapy. This book contains chapters on the engineering of polymers and nanomaterials for gene therapy, and how they can form complexes with DNA and avoid both in vitro and in vivo barriers. Other chapters describe in vitro, ex vivo, in vivo gene therapy studies, and the current issues affecting non-viral gene therapy. - Explores current challenges in the research of genetic diseases - Discusses polymers for gene therapy and their function in designing advanced materials - Provides examples of organic and inorganic nanomaterials for gene therapy - Includes labeling, targeting, and assays - Looks at characterization, physico-(bio)chemical properties, and applications
A comprehensive review of contemporary antisense oligonucleotides drugs and therapeutic principles, methods, applications, and research Oligonucleotide-based drugs, in particular antisense oligonucleotides, are part of a growing number of pharmaceutical and biotech programs progressing to treat a wide range of indications including cancer, cardiovascular, neurodegenerative, neuromuscular, and respiratory diseases, as well as other severe and rare diseases. Reviewing fundamentals and offering guidelines for drug discovery and development, this book is a practical guide covering all key aspects of this increasingly popular area of pharmacology and biotech and pharma research, from the basic science behind antisense oligonucleotides chemistry, toxicology, manufacturing, to safety assessments, the design of therapeutic protocols, to clinical experience. Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. While the idea of antisense oligonucleotides to target single genes dates back to the 1970's, most advances have taken place in recent years. The increasing number of antisense oligonucleotide programs in clinical development is a testament to the progress and understanding of pharmacologic, pharmacokinetic, and toxicologic properties as well as improvement in the delivery of oligonucleotides. This valuable book reviews the fundamentals of oligonucleotides, with a focus on antisense oligonucleotide drugs, and reports on the latest research underway worldwide. • Helps readers understand antisense molecules and their targets, biochemistry, and toxicity mechanisms, roles in disease, and applications for safety and therapeutics • Examines the principles, practices, and tools for scientists in both pre-clinical and clinical settings and how to apply them to antisense oligonucleotides • Provides guidelines for scientists in drug design and discovery to help improve efficiency, assessment, and the success of drug candidates • Includes interdisciplinary perspectives, from academia, industry, regulatory and from the fields of pharmacology, toxicology, biology, and medicinal chemistry Oligonucleotide-Based Drugs and Therapeutics belongs on the reference shelves of chemists, pharmaceutical scientists, chemical biologists, toxicologists and other scientists working in the pharmaceutical and biotechnology industries. It will also be a valuable resource for regulatory specialists and safety assessment professionals and an important reference for academic researchers and post-graduates interested in therapeutics, antisense therapy, and oligonucleotides.
This edited book, "Nucleic Acids - From Basic Aspects to Laboratory Tools", contains a series of chapters that highlight the development and status of the various aspects of the nucleic acids related to DNA chemistry and biology and the molecular application of these small DNA molecules and related synthetic analogues within biological systems. Furthermore, it is hoped that the information in the present book will be of value to those directly engaged in the handling and use of nucleic acids, and that this book will continue to meet the expectations and needs of all who are interested in the different fascinating aspects of molecular biology.
A cutting-edge review of the important issues underlying the therapeutic use of nucleic acid-mediated gene silencing. Topics range from basic methodology and delivery to targeting and clinical targets. The authors thoroughly explain the latest developments in RNA biology, as well as the underpinnings of RNA interference, oligodeoxynucleotide delivery into cells, and strategies for targeting these molecules to accessible regions within the mRNA. They also provide some examples of how these new therapeutic compounds are being used clinically.