Download Free Nucleation And Crystal Growth Book in PDF and EPUB Free Download. You can read online Nucleation And Crystal Growth and write the review.

A unique text presenting practical information on the topic of nucleation and crystal growth processes from metastable solutions and melts Nucleation and Crystal Growth is a groundbreaking text thatoffers an overview and description of the processes and phenomena associated with metastability of solutions and melts. The author—a noted expert in the field—puts the emphasis on low-temperature solutions that are typically involved in crystallization in a wide range of industries. The text begins with a review of the basic knowledge of solutions and the fundamentals of crystallization processes. The author then explores topics related to the metastable state of solutions and melts from the standpoint of three-dimensional nucleation and crystal growth. Nucleation and Crystal Growth is the first text that contains a unified description and discussion of the many processes and phenomena occurring in the metastable zone of solutions and melts from the consideration of basic concepts of structure of crystallization. This important text: Outlines an interdisciplinary approach to the topic and offers an essential guide for crystal growth practitioners in materials science, physics, and chemical engineering Contains a comprehensive content that details the crystallization processes starting from the initial solutions and melts, all the way through nucleation, to the final crystal products Presents a unique focus and is the first book on understanding, and exploiting, metastability of solutions and melts in crystallization processes Written for specialists and researchers in the fields of materials science, condensed matter physics, and chemical engineering. Nucleation and Crystal Growth is a practical resource filled with hands-on knowledge of nucleation and crystal growth processes from metastable solutions and melts.
Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design. Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume
This is the first-ever textbook on the fundamentals of nucleation, crystal growth and epitaxy. It has been written from a unified point of view and is thus a non-eclectic presentation of this interdisciplinary topic in materials science. The reader is required to possess some basic knowledge of mathematics and physics. All formulae and equations are accompanied by examples that are of technological importance. The book presents not only the fundamentals but also the state of the art in the subject. The second revised edition includes two separate chapters dealing with the effect of the Enrich-Schwoebel barrier for down-step diffusion, as well as the effect of surface active species, on the morphology of the growing surfaces. In addition, many other chapters are updated accordingly. Thus, it serves as a valuable reference book for both graduate students and researchers in materials science.
Previous ed.: published as Measurement of crystal growth rates. Germany: European Federation of Chemical Engineering, Working Party on Crystallization, 1990.
Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space
This indispensable two-volume handbook covers everything on this hot research field. The first part deals with the synthesis, modification, characterization and application of catalytic active zeolites, while the second focuses on such reaction types as cracking, hydrocracking, isomerization, reforming and other industrially important topics. Edited by a highly experienced and internationally renowned team with chapters written by the "Who's Who" of zeolite research.
First book ever printed on growing crystals in a gel medium provides thorough descriptions of the procedure, its history and future potential. "Concise and readable."—Science. 42 illus. 1970 edition.
Volume 54 of Reviews in Mineralogy and Geochemistry focuses upon the various processes by which organisms direct the formation of minerals. Our framework of examining biominerals from the viewpoints of major mineralization strategies distinguishes this volume from most previous reviews. The review begins by introducing the reader to over-arching principles that are needed to investigate biomineralization phenomena and shows the current state of knowledge regarding the major approaches to mineralization that organisms have developed over the course of Earth history. By exploring the complexities that underlie the "synthesis" of biogenic materials, and therefore the basis for how compositions and structures of biominerals are mediated (or not), we believe this volume will be instrumental in propelling studies of biomineralization to a new level of research questions that are grounded in an understanding of the underlying biological phenomena.
In the last decade, numerous studies have demonstrated the existence of alternative pathways to nucleation and crystallisation that oppose the classical view. Such proposed scenarios include multistage reactions proceeding via various precursor species and/or intermediate phases. The aim of this book is to review and discuss these recent advances in our understanding of the early stages of mineralisation through a series of contributions that address both experimental and theoretical studies about the formation and nature of initial precursor species (e.g., prenucleation clusters, dense liquid phases, amorphous nanoparticles, etc.) as well as their transformations leading to the stable mineral phase. Several chapters are devoted to cutting-edge analytical techniques used for investigating the above processes in situ, in real time and at conditions relevant to both natural and industrial processes. At the end of the book, the editors summarize the key questions that still need to be addressed in order to establish a complete picture of the nucleation and growth processes involved during the formation of minerals
Crystal Growth, Second Edition deals with crystal growth methods and the relationships between them. The chemical physics of crystal growth is discussed, along with solid growth techniques such as annealing, sintering, and hot pressing; melt growth techniques such as normal freezing, cooled seed method, crystal pulling, and zone melting; solution growth methods; and vapor phase growth. This book is comprised of 15 chapters and opens with a bibliography of books and source material, highlighted by a classification of crystal growth techniques. The following chapters focus on the molecular state of a crystal when in equilibrium with respect to growth or dissolution; the fundamentals of classical and modern hydrodynamics as applied to crystal growth processes; creation, control, and measurement of the environment in which a crystal with desired properties can grow; and growth processes where transport occurs through the vapor phase. The reader is also introduced to crystal growth with molecular beam epitaxy; crystal pulling as a crystal growth method; and zone refining and its applications. This monograph will be of interest to physicists and crystallographers.