Download Free Nuclear Import And Export In Plants And Animals Book in PDF and EPUB Free Download. You can read online Nuclear Import And Export In Plants And Animals and write the review.

Nuclear Import and Export in Plants and Animals provides insight into the remarkable mechanisms of nuclear import and export. This book covers a range of topics from the nuclear pore structure, to nuclear import and export of macromolecules in plant and animal cells. In addition, the book covers the special cases of nuclear import of Agrobacterium T-DNA during plant genetic transformation, nuclear import and export of animal viruses, and nuclear intake of foreign DNA. A chapter on research methods to study nuclear transport concludes the book.
Volume 122 of Methods in Cell Biology describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (including mammalian cells, Xenopus, C. elegans, yeast). The volume enables investigators to analyze nuclear pore complex structure, assembly, and dynamics; to evaluate protein and RNA trafficking through the nuclear envelope; and to design in vivo or in vitro assays appropriate to their research needs. Beyond the study of nuclear pores and transport as such, these protocols will also be helpful to scientists characterizing gene regulation, signal transduction, cell cycle, viral infections, or aging. The NPC being one of the largest multiprotein complexes in the cell, some protocols will also be of interest for people currently characterizing other macromolecular assemblies. This book is thus designed for laboratory use by graduate students, technicians, and researchers in many molecular and cellular disciplines. Describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (mammalian cells, Xenopus, C. elegans, yeast) Chapters are written by experts in the field Cutting-edge material
The Nuclear Envelope brings together the major current topics in nuclear envelope structure, transport, transcriptional regulation and cell signaling. The volume is divided into four sections: 1. Proteins of the nuclear envelope, including nuclear envelope proteomics, structure and function. 2. Nuclear pores and transport at the nuclear envelope, including pore complex structure, assembly and function and import and export pathways. 3. Nuclear envelope dynamics, including dynamics of lamina assembly and disassembly. 4. Nuclear signaling and transcription regulation, including signaling to the nucleus and spectrin repeat proteins and their implications or communication between the nucleus and cytoplasm.
It is now well established that jasmonates, originally identified as the major component of jasmine scent, play a universal role in the plant kingdom and are involved in the regulation of diverse aspects of plant biology, including growth, development, metabolism, and interaction with the environment. In Jasmonate Signaling: Methods and Protocols, experts in the field aim to unite powerful emerging omics platforms with a number of key reductionist approaches to form a comprehensive collection of tools and protocols. The detailed chapters in this book embrace physiological, environmental, molecular, omics, and bioinformatics approaches that allow dissecting jasmonate actions in the model species Arabidopsis thaliana or in other plants. Written in the highly successful Methods in Molecular Biology series format, chapters feature introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, along with tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Jasmonate Signaling: Methods and Protocols will empower interested researchers to dissect all steps of jasmonate signaling and the processes they modulate.
This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.
The seminal text Plant Virology is now in its fifth edition. It has been 10 years since the publication of the fourth edition, during which there has been an explosion of conceptual and factual advances. The fifth edition of Plant Virology updates and revises many details of the previous edition while retaining the important earlier results that constitute the field's conceptual foundation. Revamped art, along with fully updated references and increased focus on molecular biology, transgenic resistance, aphid transmission, and new, cutting-edge topics, bring the volume up to date and maintain its value as an essential reference for researchers and students in the field. Thumbnail sketches of each genera and family groups Genome maps of all genera for which they are known Genetic engineered resistance strategies for virus disease control Latest understanding of virus interactions with plants, including gene silencing Interactions between viruses and insect, fungal, and nematode vectors Contains over 300 full-color illustrations
As the oldest and largest human intervention in nature, the science of agriculture is one of the most intensely studied practices. From manipulation of plant gene structure to the use of plants for bioenergy, biotechnology interventions in plant and agricultural science have been rapidly developing over the past ten years with immense forward leaps on an annual basis. This book begins by laying the foundations for plant biotechnology by outlining the biological aspects including gene structure and expression, and the basic procedures in plant biotechnology of genomics, metabolomics, transcriptomics and proteomics. It then focuses on a discussion of the impacts of biotechnology on plant breeding technologies and germplasm sustainability. The role of biotechnology in the improvement of agricultural traits, production of industrial products and pharmaceuticals as well as biomaterials and biomass provide a historical perspective and a look to the future. Sections addressing intellectual property rights and sociological and food safety issues round out the holistic discussion of this important topic. Includes specific emphasis on the inter-relationships between basic plant biotechnologies and applied agricultural applications, and the way they contribute to each other Provides an updated review of the major plant biotechnology procedures and techniques, their impact on novel agricultural development and crop plant improvement Takes a broad view of the topic with discussions of practices in many countries
Agrobacterium is a plant pathogen which causes the “crown-gall” disease, a neoplastic growth that results from the transfer of a well-defined DNA segment (“transferred DNA”, or “T-DNA”) from the bacterial Ti (tumor-inducing) plasmid to the host cell, its integration into the host genome, and the expression of oncogenes contained on the T-DNA. The molecular machinery, needed for T-DNA generation and transport into the host cell and encoded by a series of chromosomal (chv) and Ti-plasmid virulence (vir) genes, has been the subject of numerous studies over the past several decades. Today, Agrobacterium is the tool of choice for plant genetic engineering with an ever expanding host range that includes many commercially important crops, flowers, and tree species. Furthermore, its recent application for the genetic transformation of non-plant species, from yeast to cultivated mushrooms and even to human cells, promises this bacterium a unique place in the future of biotechnological applications. The book is a comprehensive volume describing Agrobacterium's biology, interactions with host species, and uses for genetic engineering.