Download Free Nuclear Forensics Beyond The Science Book in PDF and EPUB Free Download. You can read online Nuclear Forensics Beyond The Science and write the review.

Now in its second edition, Nuclear Forensic Analysis provides a multidisciplinary reference for forensic scientists, analytical and nuclear chemists, and nuclear physicists in one convenient source. The authors focus particularly on the chemical, physical, and nuclear aspects associated with the production or interrogation of a radioactive sample.
Nuclear material changes its form and properties as it moves through the nuclear fuel cycle, from one facility to another. Each step of the fuel cycle or each use of the material will inevitably leave its mark. The science of determining the history of a sample of nuclear material through the study of these characteristics is known as nuclear forensics. While nuclear forensic analysis has normally been associated with investigations and prosecutions in the contextof trafficking of nuclear materials or nuclear terrorism, it had wider applications in in national security contexts, such as nuclear non-proliferation, disarmament, and arms control. The New Nuclear Forensics is the first book to give a definitive guide to this broader definition of nuclear forensic analysis. This book describes the various methods used in nuclear forensics, giving first a broad introduction to the process followed by details of relevant measurement techniques and procedures. In each case, the advantages and limitations are outlined. To put these methods in context, the book also recounts the history of the discipline anddescribes the diverse contemporary applications of nuclear forensics.
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
Radiological crime scene management is the process used to ensure safe, secure, effective and efficient operations at a crime scene where nuclear or other radioactive materials are known, or suspected, to be present. Managing a radiological crime scene is a key part of responding to a nuclear security event. Evidence collection at radiological crime scenes may share a wide range of characteristics with that at conventional crime scenes, such as evidence search patterns, geographical scene modelling and evidence recording, whether or not explosives are involved. This publication focuses on the framework and functional elements for managing a radiological crime scene that are distinct from any other crime scene. It assumes that States have a capability for managing conventional crime scenes.
Modern forensic science has significantly affected historical debate over some well-known past crimes or mysteries, utilizing modern DNA, nuclear, and chemical analyses to reexamine the past. This book takes an in-depth look at 20 significant cases where investigators have applied new forensic techniques to confirm, dispute, or revise accepted historical accounts. Among the cases included are the murder of King Tut, the validity of the Vinland Map, the authenticity of the Hitler diaries, Joan of Arc's ashes, the bones of Anastasia, arsenic and the death of Napoleon, and the dating of the Shroud of Turin, plus 13 more.
The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.
This book provides a primary reference source for nuclear forensic science, including the vastly disciplinary nature of the overall endeavor for questioned weapons of mass-destruction specimens. Nothing like this exists even in the classified material. For the first time, the fundamental principles of radioforensic analysis, all pertinent protocols and procedures, computer modeling development, interpretational insights, and attribution considerations are consolidated into one convenient source. The principles and techniques so developed are then demonstrated and discussed in their applications to real-world investigations and casework conducted over the past several years.
Nuclear forensics is important to our national security. Actions, including provision of appropriate funding, are needed now to sustain and improve the nation's nuclear forensics capabilities. The Department of Homeland Security (DHS), working with cooperating agencies and national laboratories, should plan and implement a sustainable, effective nuclear forensics program. Nuclear forensics is the examination and evaluation of discovered or seized nuclear materials and devices or, in cases of nuclear explosions or radiological dispersals, of detonation signals and post-detonation debris. Nuclear forensic evidence helps law enforcement and intelligence agencies work toward preventing, mitigating, and attributing a nuclear or radiological incident. This report, requested by DHS, the National Nuclear Security Administration, and the Department of Defense, makes recommendations on how to sustain and improve U.S. nuclear forensics capabilities. The United States has developed a nuclear forensics capability that has been demonstrated in real-world incidents of interdicted materials and in exercises of actions required after a nuclear detonation. The committee, however, has concerns about the program and finds that without strong leadership, careful planning, and additional funds, these capabilities will decline.
The U.S. government has made safeguarding of weapons-grade plutonium and highly enriched uranium an international policy priority, and convened The 2010 Nuclear Security Summit in Washington, D.C., on April 12 and 13, 2010. Forty six governments sent delegations to the summit and twenty nine of them made national commitments to support nuclear security. During the Summit, India announced its commitment to establish a Global Centre for Nuclear Energy Partnership. The Centre is to be open to international participation through academic0 exchanges, training, and research and development efforts. India-United States Cooperation on Global Security is the summary of a workshop held by the U.S. National Academy of Sciences (NAS) together with its partner of more than 15 years, the National Institute for Advanced Studies (NIAS) in Bangalore, India. The workshop identified and examined potential areas for substantive scientific and technical cooperation between the two countries on issues related to nuclear material security. Technical experts from India and the United States focused on topics of nuclear material security and promising opportunities for India and the United States to learn from each other and cooperate. This report discusses nuclear materials management issues such as nuclear materials accounting, cyber security, physical security, and nuclear forensics.
Nuclear Safety provides the methods and data needed to evaluate and manage the safety of nuclear facilities and related processes using risk-based safety analysis, and provides readers with the techniques to assess the consequences of radioactive releases. The book covers relevant international and regional safety criteria (US, IAEA, EUR, PUN, URD, INI). The contents deal with each of the critical components of a nuclear plant, and provide an analysis of the risks arising from a variety of sources, including earthquakes, tornadoes, external impact and human factors. It also deals with the safety of underground nuclear testing and the handling of radioactive waste. - Covers all plant components and potential sources of risk including human, technical and natural factors. - Brings together information on nuclear safety for which the reader would previously have to consult many different and expensive sources. - Provides international design and safety criteria and an overview of regulatory regimes.