Download Free Nuclear Cytoplasmic Transport Book in PDF and EPUB Free Download. You can read online Nuclear Cytoplasmic Transport and write the review.

Dysfunction of nuclear-cytoplasmic transport systems has been associated with many human diseases. Thus, understanding of how functional this transport system maintains, or through dysfunction fails to maintain remains the core question in cell biology. In eukaryotic cells, the nuclear envelope (NE) separates the genetic transcription in the nucleus from the translational machinery in the cytoplasm. Thousands of nuclear pore complexes (NPCs) embedded on the NE selectively mediate the bidirectional trafficking of macromolecules such as RNAs and proteins between these two cellular compartments. In this book, the authors integrate recent progress on the structure of NPC and the mechanism of nuclear-cytoplasmic transport system in vitro and in vivo.
Bidirectional traffic of macromolecules across the nuclear envelope is an active and essential transport process in all eukaryotic cells. Work on various model systems has led to a tremendous increase in our understanding of nuclear transport in recent years. This volume summarizes our current knowledge of protein and RNA transport into and out of the nucleus. It contains nine up-to-date reviews which cover various aspects of nucleocytoplasmic transport, including the structure and function of the nuclear pore complex, the role of soluble transport factors in protein and RNA transport, and the regulation of protein transport through the nuclear pore.
Delivery of therapeutic proteomics and genomics represent an important area of drug delivery research. Genomics and proteomics approaches could be used to direct drug development processes by unearthing pathways involved in disease pathogenesis where intervention may be most successful. This book describes the basics of genomics and proteomics and highlights the various chemical, physical and biological approaches to protein and gene delivery. Covers a diverse array of topics from basic sciences to therapeutic applications of proteomics and genomics delivery Of interest to researchers in both academia and industry Highlights what’s currently known and where further research is needed
Volume 122 of Methods in Cell Biology describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (including mammalian cells, Xenopus, C. elegans, yeast). The volume enables investigators to analyze nuclear pore complex structure, assembly, and dynamics; to evaluate protein and RNA trafficking through the nuclear envelope; and to design in vivo or in vitro assays appropriate to their research needs. Beyond the study of nuclear pores and transport as such, these protocols will also be helpful to scientists characterizing gene regulation, signal transduction, cell cycle, viral infections, or aging. The NPC being one of the largest multiprotein complexes in the cell, some protocols will also be of interest for people currently characterizing other macromolecular assemblies. This book is thus designed for laboratory use by graduate students, technicians, and researchers in many molecular and cellular disciplines. Describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (mammalian cells, Xenopus, C. elegans, yeast) Chapters are written by experts in the field Cutting-edge material
Nuclear Import and Export in Plants and Animals provides insight into the remarkable mechanisms of nuclear import and export. This book covers a range of topics from the nuclear pore structure, to nuclear import and export of macromolecules in plant and animal cells. In addition, the book covers the special cases of nuclear import of Agrobacterium T-DNA during plant genetic transformation, nuclear import and export of animal viruses, and nuclear intake of foreign DNA. A chapter on research methods to study nuclear transport concludes the book.
The means by which proteins and RNAs are exchanged between cytoplasm and nucleus have interested cell biologists for many years, and the field has seen a number of exciting recent advances. Much has been learned about the intricate architecture of the nuclear pore-complex, the mechanisms by which transport substrates are sorted, and the supply of energy for exchange processes. This book attempts a general review of the growing body of knowledge. However, the authors challenge the presumptions implicit in some interpretations of the evidence, re-examining the concept of "transport" within cells, and suggesting that lessons learned from nucleocytoplasmic transport studies can elucidate wider aspects of cell biology.
Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines. Highlights the link between the (bio)chemistry and the (bio)physics of chromatin Deciphers the complex interplay between numerous biochemical factors at task in the nucleus and the physical state of chromatin Provides a collective view of the field by a large, diverse group of authors with both physics and biology backgrounds
Pharmacoepigenetics, Volume Eleven provides a comprehensive volume on the role of epigenetics and epigenomics in drug discovery and development, providing a detailed, but accessible, view of the field, from basic principles, to applications in disease therapeutics. Leading international researchers from across academia, clinical settings and the pharmaceutical industry discuss the influence of epigenetics and epigenomics in human pathology, epigenetic biomarkers for disease prediction, diagnosis, and treatment, current epigenetic drugs, and the application of epigenetic procedures in drug development. Throughout the book, chapter authors offer a balanced and objective discussion of the future of pharmacoepigenetics and its crucial contribution to the growth of precision and personalized medicine. Fully examines the influence of epigenetics and epigenomics in human pathology, epigenetic biomarkers for disease prediction, diagnosis, treatment, current epigenetic drugs and the application of epigenetic procedures in drug development Features chapter contributions from leading international researchers in academia, clinical settings and the pharmaceutical industry Instructs researchers, students and clinicians on how to better interpret and employ pharmacoepigenetics in drug development, efficiency and safety Provides a balanced and objective discussion of the future of pharmacoepigenetics and its crucial role in precision medicine